The development of aqueous battery with dual mechanisms is now arousing more and more interest.The dual mechanisms of Zn^(2+)(de)intercalation and I^(-)/I_(2)redox bring unexpected effects.Herein,differing from previo...The development of aqueous battery with dual mechanisms is now arousing more and more interest.The dual mechanisms of Zn^(2+)(de)intercalation and I^(-)/I_(2)redox bring unexpected effects.Herein,differing from previous studies using Zn I_(2)additive,this work designs an aqueous Bi I_(3)-Zn battery with selfsupplied I^(-).Ex situ tests reveal the conversion of Bi I_(3)into Bi(discharge)and Bi OI(charge)at the 1st cycle and the dissolved I^(-)in electrolyte.The active I^(-)species enhances the specific capacity and discharge medium voltage of electrode as well as improves the generation of Zn dendrite and by-product.Furthermore,the porous hard carbon is introduced to enhance the electronic/ionic conductivity and adsorb iodine species,proven by experimental and theoretical studies.Accordingly,the well-designed Bi I_(3)-Zn battery delivers a high reversible capacity of 182 m A h g^(-1)at 0.2 A g^(-1),an excellent rate capability with 88 m A h g^(-1)at 10 A g^(-1),and an impressive cyclability with 63%capacity retention over 20 K cycles at 10 A g^(-1).An excellent electrochemical performance is obtained even at a high mass loading of 6 mg cm^(-2).Moreover,a flexible quasi-solid-state Bi I_(3)-Zn battery exhibits satisfactory battery performances.This work provides a new idea for designing high-performance aqueous battery with dual mechanisms.展开更多
Free electron lasers provide high-power and ultrashort pulses with extreme brightness. In order to improve a facility's capabilities and explore the possibility of performing high-resolution time-resolved experime...Free electron lasers provide high-power and ultrashort pulses with extreme brightness. In order to improve a facility's capabilities and explore the possibility of performing high-resolution time-resolved experiments, a beam arrival time resolution under 100 fs is required. In this article, a novel beam arrival time monitor(BAM)equipped with two cavities has been designed and a beam flight time measurement scheme based on the BAM prototype has been proposed to estimate phase jitter in the signal measurement system. The two BAM cavities work at different frequencies and the frequency difference is designed to be 35 MHz. Therefore, a self-mixing intermediate frequency signal can be generated using the two cavities. The measured beam flight time shows a temporal deviation of 37 fs(rms).展开更多
The DLBSW( dual laser-beam bilateral synchronous welding) technology of T-type joint has been widely used for the connection of skins and stringers in airplane industry. To understand the thermodynamic and mechanica...The DLBSW( dual laser-beam bilateral synchronous welding) technology of T-type joint has been widely used for the connection of skins and stringers in airplane industry. To understand the thermodynamic and mechanical behavior of this process, it is necessary to establish a reasonable heat source model. Two different surface-body combination heat source models are adopted in this paper. Both models use the Gaussian surface heat source model and one is combined with the cone body heat source model and the other is combined with Gaussian rotator body heat source model. The simulation results of these two different models are investigated. And the temperature field results of DLBSW process for T-joint with two different heat sources are discussed. It is indicated that the combination heat source model is effective to simulate the DLBSW process and the current study is useful for more profound research in this field.展开更多
The accurate knowledge of the thrust vector eccentricity and beam divergence characteristics of Hall thrusters are of significant engineering value for the beneficial integration and successful application of Hall thr...The accurate knowledge of the thrust vector eccentricity and beam divergence characteristics of Hall thrusters are of significant engineering value for the beneficial integration and successful application of Hall thrusters on spacecraft.For the characteristics of the plume bipolar diffusion due to the annular discharge channel of the Hall thruster,a Gaussian-fitted method for thrust vector deviation angle and beam divergence of Hall thrusters based on dual Faraday probe array planes was proposed in respect of the Hall thruster beam characteristics.The results show that the ratios of the deviation between the maximum and minimum values of the beam divergence angle and the thrust vector eccentricity angle using a Gaussian fit to the optimized Faraday probe dual plane to the mean value are 1.4%and 11.5%,respectively.The optimized thrust vector eccentricity angle obtained has been substantially improved,by approximately 20%.The beam divergence angle calculated using a Gaussian fitting to the optimized Faraday probe dual plane is approximately identical to the non-optimized one.The beam divergence and thrust vector eccentricity angles for different anode mass flow rates were obtained by averaging the beam divergence and thrust vector eccentricity angles calculated by the dual-plane,Gaussian-fitted ion current density method for different cross-sections.The study not only allows for an immediate and effective tool for determining the design of thrust vector adjustment mechanisms of spacecraft with different power Hall thrusters but also for characterizing the 3D spatial distribution of the Hall thruster plume.展开更多
As a kind of special acoustic field, the helical wavefront of an acoustic vortex(AV) beam is demonstrated to have a pressure zero with phase singularity at the center in the transverse plane. The orbital angular mom...As a kind of special acoustic field, the helical wavefront of an acoustic vortex(AV) beam is demonstrated to have a pressure zero with phase singularity at the center in the transverse plane. The orbital angular momentum of AVs can be applied to the field of particle manipulation, which attracts more and more attention in acoustic researches. In this paper,by using the simplified circular array of point sources, dual coaxial AV beams are excited by the even-and odd-numbered sources with the topological charges of l_E and l_O based on the phase-coded approach, and the composite acoustic field with an on-axis center-AV and multiple off-axis sub-AVs can be generated by the superimposition of the AV beams for|l_E| ≠ |l_O|. The generation of edge phase dislocation is theoretically derived and numerically analyzed for l_E=-l_O. The numbers and the topological charges as well as the locations of the center-AV and sub-AVs are demonstrated, which are proved to be determined by the topological charges of the coaxial AV beams. The proposed approach breaks through the limit of only one on-axis AV with a single topological charge along the beam axis, and also provides the feasibility of off-axis particle trapping with multiple AVs in object manipulation.展开更多
The sulfide-based solid-state electrolytes(SEs)reactivity toward moisture and Li-metal are huge barriers that impede their large-scale manufactu ring and applications in all-solid-state lithium batteries(ASSLBs).Herei...The sulfide-based solid-state electrolytes(SEs)reactivity toward moisture and Li-metal are huge barriers that impede their large-scale manufactu ring and applications in all-solid-state lithium batteries(ASSLBs).Herein,we proposed an Al and O dual-doped strategy for Li_(3)PS_(4)SE to regulate the chemical/electrochemical stability of anionic PS_(4)^(3-)tetrahedra to mitigate structural hydrolysis and parasitic reactions at the SE/Li interface.The optimized Li_(3.08)A_(10.04)P_(0.96)S_(3.92)O_(0.08)SE presents the highestσLi+of 3.27 mS cm^(-1),which is~6.8 times higher than the pristine Li_(3)PS_(4)and excellently inhibits the structural hydrolysis for~25 min@25%humidity at RT.DFT calculations confirmed that the enhanced chemical stability was revealed to the intrinsically stable entities,e.g.,POS33-units.Moreover,Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)SE cycled stably in Li//Li symmetric cell over 1000 h@0.1 mA cm^(-2)/0.1 mA h cm^(-2),could be revealed to Li-Al alloy and Li_(2)Oat SE/Li interface impeding the growth of Li-dendrites during cycling.Resultantly,LNO@LCO/Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)/Li-In cell delivered initial discharge capacities of 129.8 mA h g^(-1)and 83.74%capacity retention over 300 cycles@0.2 C at RT.Moreover,the Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)SE presented>90%capacity retention over 200 and 300 cycles when the cell was tested with LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2)(NCA)cathode material vs.5 and 10 mg cm^(-2)@RT.展开更多
Fe-N films were prepared on Si substrate by dual ion beam sputtering (DIBS). It is found that the crystal structure of the films varies from α-Fe, to ε-Fe2-3N, ε-Fe2-3N +γ-Fe4N, and finally γ'-Fe4N with the i...Fe-N films were prepared on Si substrate by dual ion beam sputtering (DIBS). It is found that the crystal structure of the films varies from α-Fe, to ε-Fe2-3N, ε-Fe2-3N +γ-Fe4N, and finally γ'-Fe4N with the increase in substrate temperature (TS). The magnetic properties of the films were investigated by a vibrating sample magnetometer (VSM). The structure of the films is insensitive to the ratios of N2/Ar in main ion source(MIS), and is mainly influenced by the substrate temperature (Ts).展开更多
Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding pro...Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding process were numerically simulated and experimentally measured. The results show that the rotated parabola body heat source is fit for the simulation of the electron beam welding. The temperature distribution is asymmetric along the weld center and the temperature in the titanium alloy plate is higher than that in the 304 STS plate. The thermal stress also appears to be in asymmetric distribution. The residual tensile stress mainly exists in the weld at the 304 STS side. The copper filler metal decreases the peak temperature and temperature grade in the joint as well as the residual stress. The longitudinal and lateral residual tensile strengths reduce by 66 MPa and 31 MPa, respectively. From the temperature and residual stress, it is concluded that copper is a good filler metal candidate for the electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel.展开更多
A long-/long-wave dual-color detector with N-M-π-B-π-M-N structure was developed based on a type-Ⅱ InAs/GaSb superlattice. The saturated responsivity was achieved under low bias voltage for both channels. The devic...A long-/long-wave dual-color detector with N-M-π-B-π-M-N structure was developed based on a type-Ⅱ InAs/GaSb superlattice. The saturated responsivity was achieved under low bias voltage for both channels. The device could be operated as a single detector for sequential detection and showed high quantum efficiencies. The peak quantum efficiencies of long-wavelength infrared band-1(blue channel) and long-wavelength infrared band-2(red channel) were 44% at 6.3 μm under 20 mV and 57% at 9.1 μm under-60 mV, respectively. The optical performance for each channel was achieved using a 2 μm thickness absorber. Due to the high QE, the specific detectivities of the blue and red channels reached5.0×10^(11) cm·Hz^(1/2)/W at 6.8 μm and 3.1×10^(11) cm·Hz1^(1/2)/W at 9.1 μm, respectively, at 77 K.展开更多
Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with a copper sheet as interlayer was carried out.Microstructures of the joint were studied by optical microscopy(OM),scanning electron microscopy...Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with a copper sheet as interlayer was carried out.Microstructures of the joint were studied by optical microscopy(OM),scanning electron microscopy(SEM) and X-ray diffractometry(XRD).In addition,the mechanical properties of the joint were evaluated by tensile test and the microhardness was measured.These two alloys were successfully welded by adding copper transition layer into the weld.Solid solution with a certain thickness was located at the interfaces between weld and base metal in both sides.Regions inside the weld and near the stainless steel were characterized by solid solution of copper with TiFe2 intermetallics dispersedly distributed in it.While weld near titanium alloy contained Ti-Cu and Ti-Fe-Cu intermetallics layer,in which the hardness of weld came to the highest value.Brittle fracture occurred in the intermetallics layer when the joint was stretched.展开更多
As a preliminary step in the nonlinear design of shape memory alloy(SMA) composite structures,the force-displacement characteristics of the SMA layer are studied.The bilinear hysteretic model is adopted to describe ...As a preliminary step in the nonlinear design of shape memory alloy(SMA) composite structures,the force-displacement characteristics of the SMA layer are studied.The bilinear hysteretic model is adopted to describe the constitutive relationship of SMA material.Under the assumption that there is no point of SMA layer finishing martensitic phase transformation during the loading and unloading process,the generalized restoring force generated by SMA layer is deduced for the case that the simply supported beam vibrates in its first mode.The generalized force is expressed as piecewise-nonlinear hysteretic function of the beam transverse displacement.Furthermore the energy dissipated by SMA layer during one period is obtained by integration,then its dependencies are discussed on the vibration amplitude and the SMA's strain(Ms-Strain) value at the beginning of martensitic phase transformation.It is shown that SMA's energy dissipating capacity is proportional to the stiffness difference of bilinear model and nonlinearly dependent on Ms-Strain.The increasing rate of the dissipating capacity gradually reduces with the amplitude increasing.The condition corresponding to the maximum dissipating capacity is deduced for given value of the vibration amplitude.The obtained results are helpful for designing beams laminated with shape memory alloys.展开更多
The majority of existing high-power laser therapeutic instruments employ a single wavelength for a single target;thus,they do not meet the requirements for clinical treatment.Therefore,this study designs an optical sy...The majority of existing high-power laser therapeutic instruments employ a single wavelength for a single target;thus,they do not meet the requirements for clinical treatment.Therefore,this study designs an optical system for a dual-wavelength high-power laser therapeutic device with a variable spot size.The waist of the short arm of the optical cavity and the G1G2 parameter(G-parameter equivalent cavity method)is calculated using MATLAB software,the spot size and divergence angle on the lens are calculated using an ABCD matrix,and the distance between the treatment spot at different spot sizes and the transformation lens is calculated in order to design the treatment handpiece.Experiments are conducted to analyze the stability at an output power of 532 nm before beam combination and the power loss after beam combination.The results show that the output power stability of the 532-nm beam varies by less than 2%over 150 min,and the loss of both wavelengths is less than 20%,which meets the clinical requirements of the system.The safety performance can meet the requirements of national general standards for medical electrical safety.The proposed dual-wavelength laser therapy instrument has both visible wave and near-infrared wave characteristics;thus,it can accurately target both superficial vessels and vessels with a larger diameter and deeper position.This therapeutic device has the advantages of simple operation,stable and reliable laser output,high security and strong anti-interference ability,and meets the comprehensive clinical treat-ment demands of vascular diseases.展开更多
In this study, we developed a general method to analytically tackle a kind of movable boundary problem from the viewpoint of energy variation. Having grouped the adhesion of a micro-beam, droplet and carbon nanotube ...In this study, we developed a general method to analytically tackle a kind of movable boundary problem from the viewpoint of energy variation. Having grouped the adhesion of a micro-beam, droplet and carbon nanotube (CNT) ring on a substrate into one framework, we used the developed line of reasoning to investigate the adhesion behaviors of these systems. Based upon the derived governing equations and transversality conditions, explicit solutions involving the critical parameters and morphologies for the three systems are successfully obtained, and then the parameter analogies and common characteristics of them are thor- oughly investigated. The presented method has been verified via the concept of energy release rate in fracture mechanics. Our analyses provide a new approach for exploring the mechanism of different systems with similarities as well as for understanding the unity of nature. The analysis results may be beneficial for the design of nano-structured materi- als, and hold potential for enhancing their mechanical, chemical, optical and electronic properties.展开更多
This paper extends Le van's work to the case of nonlinear problem and the complicated configuration. The wrinkling stress distribution and the pressure effects are also included in our analysis. Pseudo-beam method is...This paper extends Le van's work to the case of nonlinear problem and the complicated configuration. The wrinkling stress distribution and the pressure effects are also included in our analysis. Pseudo-beam method is presented based on the inflatable beam theory to model the inflatable structures as a set of inflatable beam elements with a prestressed state. In this method, the discretized nonlinear equations are given based upon the virtual work principle with a 3-node Timoshenko's beam model. Finite element simulation is performed by using a 3-node BEAM189 element incorporating ANSYS nonlinear program. The pressure effect is equivalent included in our method by modifying beam element cross-section parameters related to pressure. A benchmark example, the bending case of an inflatable cantilever beam, is performed to verify the accuracy of our proposed method. The comparisons reveal that the numerical results obtained with our method are close to open published analytical and membrane finite element results. The method is then used to evaluate the whole buckling and the loadcarrying characteristics of an inflatable support frame subjected to a compression force. The wrinkling stress and region characteristics are also shown in the end. This method gives better convergence characteristics, and requires much less computation time. It is very effective to deal with the whole load-carrying ability analytical problems for large scale inflatable structures with complex configuration.展开更多
In this work, results on the study of the structure and photoluminescence (PL) properties of SiOxNy thin films are presented. The films were deposited at room temperature using a dual-ion-beam co-sputtering system. Th...In this work, results on the study of the structure and photoluminescence (PL) properties of SiOxNy thin films are presented. The films were deposited at room temperature using a dual-ion-beam co-sputtering system. The XRD and TEM results show that the deposited films have an amorphous structure. In the XPS result, we find N 1s spectra consist of one symmetric single peak at 397.8 eV, indicating that the nitrogen atoms are mainly bonded to silicon. It is in agreement to the result of FTIR. In SiOxNy films, an intense single PL peak at 590 nm is observed. Furthermore, with the increase of the N content in the SiOxNy films, the intensity of the PL peak at 590 nm increases a lot. The PL peak of 590 nm is suggested to originate from N-related defects.展开更多
This work studies large deflections of slen- der, non-prismatic cantilever beams subjected to a combined loading which consists of a non-uniformly distributed con- tinuous load and a concentrated load at the free end ...This work studies large deflections of slen- der, non-prismatic cantilever beams subjected to a combined loading which consists of a non-uniformly distributed con- tinuous load and a concentrated load at the free end of the beam. The material of the cantilever is assumed to be non- linearly elastic. Different nonlinear relations between stress and strain in tensile and compressive domain are considered. The accuracy of numerical solutions is evaluated by com- paring them with results from previous studies and with a laboratory experiment.展开更多
基金funding from National Natural Science Foundation of China(52103053,52102312)Huxiang Young Talents of Hunan Province(2022RC1004)+1 种基金Macao Young Scholars Program(AM2021011)Foundation of State Key Laboratory of Utilization of Woody Oil Resource(GZKF202126)。
文摘The development of aqueous battery with dual mechanisms is now arousing more and more interest.The dual mechanisms of Zn^(2+)(de)intercalation and I^(-)/I_(2)redox bring unexpected effects.Herein,differing from previous studies using Zn I_(2)additive,this work designs an aqueous Bi I_(3)-Zn battery with selfsupplied I^(-).Ex situ tests reveal the conversion of Bi I_(3)into Bi(discharge)and Bi OI(charge)at the 1st cycle and the dissolved I^(-)in electrolyte.The active I^(-)species enhances the specific capacity and discharge medium voltage of electrode as well as improves the generation of Zn dendrite and by-product.Furthermore,the porous hard carbon is introduced to enhance the electronic/ionic conductivity and adsorb iodine species,proven by experimental and theoretical studies.Accordingly,the well-designed Bi I_(3)-Zn battery delivers a high reversible capacity of 182 m A h g^(-1)at 0.2 A g^(-1),an excellent rate capability with 88 m A h g^(-1)at 10 A g^(-1),and an impressive cyclability with 63%capacity retention over 20 K cycles at 10 A g^(-1).An excellent electrochemical performance is obtained even at a high mass loading of 6 mg cm^(-2).Moreover,a flexible quasi-solid-state Bi I_(3)-Zn battery exhibits satisfactory battery performances.This work provides a new idea for designing high-performance aqueous battery with dual mechanisms.
基金supported by the National Natural Science Foundation of China(No.11575282)
文摘Free electron lasers provide high-power and ultrashort pulses with extreme brightness. In order to improve a facility's capabilities and explore the possibility of performing high-resolution time-resolved experiments, a beam arrival time resolution under 100 fs is required. In this article, a novel beam arrival time monitor(BAM)equipped with two cavities has been designed and a beam flight time measurement scheme based on the BAM prototype has been proposed to estimate phase jitter in the signal measurement system. The two BAM cavities work at different frequencies and the frequency difference is designed to be 35 MHz. Therefore, a self-mixing intermediate frequency signal can be generated using the two cavities. The measured beam flight time shows a temporal deviation of 37 fs(rms).
基金The research is sponsored by the Shanghai STCSM Project of the Postdoctoral Science Research Assistant Plan (10R21421200), the National Natural Science Foundation of China (50904038) and the China Postdoctoral Science Foundation (20100470064).
文摘The DLBSW( dual laser-beam bilateral synchronous welding) technology of T-type joint has been widely used for the connection of skins and stringers in airplane industry. To understand the thermodynamic and mechanical behavior of this process, it is necessary to establish a reasonable heat source model. Two different surface-body combination heat source models are adopted in this paper. Both models use the Gaussian surface heat source model and one is combined with the cone body heat source model and the other is combined with Gaussian rotator body heat source model. The simulation results of these two different models are investigated. And the temperature field results of DLBSW process for T-joint with two different heat sources are discussed. It is indicated that the combination heat source model is effective to simulate the DLBSW process and the current study is useful for more profound research in this field.
基金the Key Laboratory Funds for Science and Technology on Vacuum Technology and Physics Laboratory(No.HTKJ2022KL510002)the Military Test Instruments Program(No.2006ZCTF0054)。
文摘The accurate knowledge of the thrust vector eccentricity and beam divergence characteristics of Hall thrusters are of significant engineering value for the beneficial integration and successful application of Hall thrusters on spacecraft.For the characteristics of the plume bipolar diffusion due to the annular discharge channel of the Hall thruster,a Gaussian-fitted method for thrust vector deviation angle and beam divergence of Hall thrusters based on dual Faraday probe array planes was proposed in respect of the Hall thruster beam characteristics.The results show that the ratios of the deviation between the maximum and minimum values of the beam divergence angle and the thrust vector eccentricity angle using a Gaussian fit to the optimized Faraday probe dual plane to the mean value are 1.4%and 11.5%,respectively.The optimized thrust vector eccentricity angle obtained has been substantially improved,by approximately 20%.The beam divergence angle calculated using a Gaussian fitting to the optimized Faraday probe dual plane is approximately identical to the non-optimized one.The beam divergence and thrust vector eccentricity angles for different anode mass flow rates were obtained by averaging the beam divergence and thrust vector eccentricity angles calculated by the dual-plane,Gaussian-fitted ion current density method for different cross-sections.The study not only allows for an immediate and effective tool for determining the design of thrust vector adjustment mechanisms of spacecraft with different power Hall thrusters but also for characterizing the 3D spatial distribution of the Hall thruster plume.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474166 and 11604156)the Science and Technology Cooperation Projects of People’s Republic of China–Romania(Grant No.42-23)+2 种基金the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20161013)the Postdoctoral Science Foundation of China(Grant No.2016M591874)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘As a kind of special acoustic field, the helical wavefront of an acoustic vortex(AV) beam is demonstrated to have a pressure zero with phase singularity at the center in the transverse plane. The orbital angular momentum of AVs can be applied to the field of particle manipulation, which attracts more and more attention in acoustic researches. In this paper,by using the simplified circular array of point sources, dual coaxial AV beams are excited by the even-and odd-numbered sources with the topological charges of l_E and l_O based on the phase-coded approach, and the composite acoustic field with an on-axis center-AV and multiple off-axis sub-AVs can be generated by the superimposition of the AV beams for|l_E| ≠ |l_O|. The generation of edge phase dislocation is theoretically derived and numerically analyzed for l_E=-l_O. The numbers and the topological charges as well as the locations of the center-AV and sub-AVs are demonstrated, which are proved to be determined by the topological charges of the coaxial AV beams. The proposed approach breaks through the limit of only one on-axis AV with a single topological charge along the beam axis, and also provides the feasibility of off-axis particle trapping with multiple AVs in object manipulation.
基金supported by the National Natural Science Foundation of China(Nos.21203008,21975025,12274025)the Hainan Province Science and Technology Special Fund(Nos.ZDYF2021SHFZ232,ZDYF2023GXJS022)the Hainan Province Postdoctoral Science Foundation(No.300333)。
文摘The sulfide-based solid-state electrolytes(SEs)reactivity toward moisture and Li-metal are huge barriers that impede their large-scale manufactu ring and applications in all-solid-state lithium batteries(ASSLBs).Herein,we proposed an Al and O dual-doped strategy for Li_(3)PS_(4)SE to regulate the chemical/electrochemical stability of anionic PS_(4)^(3-)tetrahedra to mitigate structural hydrolysis and parasitic reactions at the SE/Li interface.The optimized Li_(3.08)A_(10.04)P_(0.96)S_(3.92)O_(0.08)SE presents the highestσLi+of 3.27 mS cm^(-1),which is~6.8 times higher than the pristine Li_(3)PS_(4)and excellently inhibits the structural hydrolysis for~25 min@25%humidity at RT.DFT calculations confirmed that the enhanced chemical stability was revealed to the intrinsically stable entities,e.g.,POS33-units.Moreover,Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)SE cycled stably in Li//Li symmetric cell over 1000 h@0.1 mA cm^(-2)/0.1 mA h cm^(-2),could be revealed to Li-Al alloy and Li_(2)Oat SE/Li interface impeding the growth of Li-dendrites during cycling.Resultantly,LNO@LCO/Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)/Li-In cell delivered initial discharge capacities of 129.8 mA h g^(-1)and 83.74%capacity retention over 300 cycles@0.2 C at RT.Moreover,the Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)SE presented>90%capacity retention over 200 and 300 cycles when the cell was tested with LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2)(NCA)cathode material vs.5 and 10 mg cm^(-2)@RT.
基金Jiangsu Province key laboratory of thin film with Grant No. K2021.
文摘Fe-N films were prepared on Si substrate by dual ion beam sputtering (DIBS). It is found that the crystal structure of the films varies from α-Fe, to ε-Fe2-3N, ε-Fe2-3N +γ-Fe4N, and finally γ'-Fe4N with the increase in substrate temperature (TS). The magnetic properties of the films were investigated by a vibrating sample magnetometer (VSM). The structure of the films is insensitive to the ratios of N2/Ar in main ion source(MIS), and is mainly influenced by the substrate temperature (Ts).
基金Foundation item:Project (2010CB731704) supported by the National Basic Research Program of ChinaProject (51075189) supported by the National Natural Science Foundation of China
文摘Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding process were numerically simulated and experimentally measured. The results show that the rotated parabola body heat source is fit for the simulation of the electron beam welding. The temperature distribution is asymmetric along the weld center and the temperature in the titanium alloy plate is higher than that in the 304 STS plate. The thermal stress also appears to be in asymmetric distribution. The residual tensile stress mainly exists in the weld at the 304 STS side. The copper filler metal decreases the peak temperature and temperature grade in the joint as well as the residual stress. The longitudinal and lateral residual tensile strengths reduce by 66 MPa and 31 MPa, respectively. From the temperature and residual stress, it is concluded that copper is a good filler metal candidate for the electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel.
基金supported by the National Key Technology R&D Program of China(Grant Nos.2018YFA0209104 and 2016YFB0402403)
文摘A long-/long-wave dual-color detector with N-M-π-B-π-M-N structure was developed based on a type-Ⅱ InAs/GaSb superlattice. The saturated responsivity was achieved under low bias voltage for both channels. The device could be operated as a single detector for sequential detection and showed high quantum efficiencies. The peak quantum efficiencies of long-wavelength infrared band-1(blue channel) and long-wavelength infrared band-2(red channel) were 44% at 6.3 μm under 20 mV and 57% at 9.1 μm under-60 mV, respectively. The optical performance for each channel was achieved using a 2 μm thickness absorber. Due to the high QE, the specific detectivities of the blue and red channels reached5.0×10^(11) cm·Hz^(1/2)/W at 6.8 μm and 3.1×10^(11) cm·Hz1^(1/2)/W at 9.1 μm, respectively, at 77 K.
文摘Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with a copper sheet as interlayer was carried out.Microstructures of the joint were studied by optical microscopy(OM),scanning electron microscopy(SEM) and X-ray diffractometry(XRD).In addition,the mechanical properties of the joint were evaluated by tensile test and the microhardness was measured.These two alloys were successfully welded by adding copper transition layer into the weld.Solid solution with a certain thickness was located at the interfaces between weld and base metal in both sides.Regions inside the weld and near the stainless steel were characterized by solid solution of copper with TiFe2 intermetallics dispersedly distributed in it.While weld near titanium alloy contained Ti-Cu and Ti-Fe-Cu intermetallics layer,in which the hardness of weld came to the highest value.Brittle fracture occurred in the intermetallics layer when the joint was stretched.
基金supported by the National Natural Science Foundation of China (10872142 and 10632040)New Century Excellent Talents in University of China (NCET-05-0247)the Key Program of the Natural Science Foundation of Tianjin (09JCZDJ26800)
文摘As a preliminary step in the nonlinear design of shape memory alloy(SMA) composite structures,the force-displacement characteristics of the SMA layer are studied.The bilinear hysteretic model is adopted to describe the constitutive relationship of SMA material.Under the assumption that there is no point of SMA layer finishing martensitic phase transformation during the loading and unloading process,the generalized restoring force generated by SMA layer is deduced for the case that the simply supported beam vibrates in its first mode.The generalized force is expressed as piecewise-nonlinear hysteretic function of the beam transverse displacement.Furthermore the energy dissipated by SMA layer during one period is obtained by integration,then its dependencies are discussed on the vibration amplitude and the SMA's strain(Ms-Strain) value at the beginning of martensitic phase transformation.It is shown that SMA's energy dissipating capacity is proportional to the stiffness difference of bilinear model and nonlinearly dependent on Ms-Strain.The increasing rate of the dissipating capacity gradually reduces with the amplitude increasing.The condition corresponding to the maximum dissipating capacity is deduced for given value of the vibration amplitude.The obtained results are helpful for designing beams laminated with shape memory alloys.
基金supported by the National Key R&D Program of China(No.2017YFB0403802)the Technology Cooperation High-tech Industriali-zation Program of Jilin Province of China and the Chinese Academy of Sciences(No.2018SYHZ0023)+2 种基金the Key Technology R&D Program of Jilin Prov-ince of China(No.20180201047YY)the Scientific Research Program of Shanghai Science and Tech-nology Commission(No.18441904300)the Technology Cooperation High-tech Industrializa-tion Program of Jilin Province of China and the Chinese Academy of Sciences(No.2019SYHZ0032)
文摘The majority of existing high-power laser therapeutic instruments employ a single wavelength for a single target;thus,they do not meet the requirements for clinical treatment.Therefore,this study designs an optical system for a dual-wavelength high-power laser therapeutic device with a variable spot size.The waist of the short arm of the optical cavity and the G1G2 parameter(G-parameter equivalent cavity method)is calculated using MATLAB software,the spot size and divergence angle on the lens are calculated using an ABCD matrix,and the distance between the treatment spot at different spot sizes and the transformation lens is calculated in order to design the treatment handpiece.Experiments are conducted to analyze the stability at an output power of 532 nm before beam combination and the power loss after beam combination.The results show that the output power stability of the 532-nm beam varies by less than 2%over 150 min,and the loss of both wavelengths is less than 20%,which meets the clinical requirements of the system.The safety performance can meet the requirements of national general standards for medical electrical safety.The proposed dual-wavelength laser therapy instrument has both visible wave and near-infrared wave characteristics;thus,it can accurately target both superficial vessels and vessels with a larger diameter and deeper position.This therapeutic device has the advantages of simple operation,stable and reliable laser output,high security and strong anti-interference ability,and meets the comprehensive clinical treat-ment demands of vascular diseases.
基金supported by the National Natural Science Foundation of China (11272357 and 11102140)Doctoral Fund of Ministry of Education of China (200804251520 and 20110141120024)Natural Science Foundation of Shandong Province (ZR2009AQ006)
文摘In this study, we developed a general method to analytically tackle a kind of movable boundary problem from the viewpoint of energy variation. Having grouped the adhesion of a micro-beam, droplet and carbon nanotube (CNT) ring on a substrate into one framework, we used the developed line of reasoning to investigate the adhesion behaviors of these systems. Based upon the derived governing equations and transversality conditions, explicit solutions involving the critical parameters and morphologies for the three systems are successfully obtained, and then the parameter analogies and common characteristics of them are thor- oughly investigated. The presented method has been verified via the concept of energy release rate in fracture mechanics. Our analyses provide a new approach for exploring the mechanism of different systems with similarities as well as for understanding the unity of nature. The analysis results may be beneficial for the design of nano-structured materi- als, and hold potential for enhancing their mechanical, chemical, optical and electronic properties.
基金supported by the Specialized Fund for the Doctoral Program of Higher Education of China (200802131046)China Postdoctoral Science Foundation Funded Major Project (200801290)+1 种基金Development Program of Outstanding Young Teachers in Harbin Institute of Technology (HITQNJS.2008.004)Specialized Fund for Innovation Talents of Science and Technology in Harbin (2008RFQXG057).
文摘This paper extends Le van's work to the case of nonlinear problem and the complicated configuration. The wrinkling stress distribution and the pressure effects are also included in our analysis. Pseudo-beam method is presented based on the inflatable beam theory to model the inflatable structures as a set of inflatable beam elements with a prestressed state. In this method, the discretized nonlinear equations are given based upon the virtual work principle with a 3-node Timoshenko's beam model. Finite element simulation is performed by using a 3-node BEAM189 element incorporating ANSYS nonlinear program. The pressure effect is equivalent included in our method by modifying beam element cross-section parameters related to pressure. A benchmark example, the bending case of an inflatable cantilever beam, is performed to verify the accuracy of our proposed method. The comparisons reveal that the numerical results obtained with our method are close to open published analytical and membrane finite element results. The method is then used to evaluate the whole buckling and the loadcarrying characteristics of an inflatable support frame subjected to a compression force. The wrinkling stress and region characteristics are also shown in the end. This method gives better convergence characteristics, and requires much less computation time. It is very effective to deal with the whole load-carrying ability analytical problems for large scale inflatable structures with complex configuration.
基金The project supported by the Nature Science Foundation of University of Jiangsu Province(No. 03KJB140116 )
文摘In this work, results on the study of the structure and photoluminescence (PL) properties of SiOxNy thin films are presented. The films were deposited at room temperature using a dual-ion-beam co-sputtering system. The XRD and TEM results show that the deposited films have an amorphous structure. In the XPS result, we find N 1s spectra consist of one symmetric single peak at 397.8 eV, indicating that the nitrogen atoms are mainly bonded to silicon. It is in agreement to the result of FTIR. In SiOxNy films, an intense single PL peak at 590 nm is observed. Furthermore, with the increase of the N content in the SiOxNy films, the intensity of the PL peak at 590 nm increases a lot. The PL peak of 590 nm is suggested to originate from N-related defects.
文摘This work studies large deflections of slen- der, non-prismatic cantilever beams subjected to a combined loading which consists of a non-uniformly distributed con- tinuous load and a concentrated load at the free end of the beam. The material of the cantilever is assumed to be non- linearly elastic. Different nonlinear relations between stress and strain in tensile and compressive domain are considered. The accuracy of numerical solutions is evaluated by com- paring them with results from previous studies and with a laboratory experiment.