The development of aqueous battery with dual mechanisms is now arousing more and more interest.The dual mechanisms of Zn^(2+)(de)intercalation and I^(-)/I_(2)redox bring unexpected effects.Herein,differing from previo...The development of aqueous battery with dual mechanisms is now arousing more and more interest.The dual mechanisms of Zn^(2+)(de)intercalation and I^(-)/I_(2)redox bring unexpected effects.Herein,differing from previous studies using Zn I_(2)additive,this work designs an aqueous Bi I_(3)-Zn battery with selfsupplied I^(-).Ex situ tests reveal the conversion of Bi I_(3)into Bi(discharge)and Bi OI(charge)at the 1st cycle and the dissolved I^(-)in electrolyte.The active I^(-)species enhances the specific capacity and discharge medium voltage of electrode as well as improves the generation of Zn dendrite and by-product.Furthermore,the porous hard carbon is introduced to enhance the electronic/ionic conductivity and adsorb iodine species,proven by experimental and theoretical studies.Accordingly,the well-designed Bi I_(3)-Zn battery delivers a high reversible capacity of 182 m A h g^(-1)at 0.2 A g^(-1),an excellent rate capability with 88 m A h g^(-1)at 10 A g^(-1),and an impressive cyclability with 63%capacity retention over 20 K cycles at 10 A g^(-1).An excellent electrochemical performance is obtained even at a high mass loading of 6 mg cm^(-2).Moreover,a flexible quasi-solid-state Bi I_(3)-Zn battery exhibits satisfactory battery performances.This work provides a new idea for designing high-performance aqueous battery with dual mechanisms.展开更多
The title compound bis(1-(4-(dimethylamino)benzylidene)-4-phenylthiosemicar-bazato)-palladium(Ⅱ)(PdL2) was obtained by reacting 1-(4-(dimethylamino)benzylidene)-4-phenyl-thiosemicarbazide with dichloro...The title compound bis(1-(4-(dimethylamino)benzylidene)-4-phenylthiosemicar-bazato)-palladium(Ⅱ)(PdL2) was obtained by reacting 1-(4-(dimethylamino)benzylidene)-4-phenyl-thiosemicarbazide with dichlorobis(benzonitrile)palladium(Ⅱ) in methanol,and its structure was characterized by single-crystal X-ray diffraction.The crystal of PdL2 was obtained in dimethyl-formamide(DMF) solvent with solvent molecules involved in the cell and crystallizes in the monoclinic system,space group C2 with a = 18.485(15),b = 7.090(5),c = 17.595(11) ,β = 121.21(3)o,V = 1972(2) 3,Z = 2,Mr = 847.40,Dc = 1.427 g/cm3,μ = 0.624 mm-1,F(000) = 880,R = 0.0607 and wR = 0.1358.The Pd atom adopts a distorted square planar coordination geometry with two Pd-N and two Pd-S bonds.The ligand loses a proton from its tautomeric thiol form and coordinates to the Pd atom via mercapto sulfur and the imine nitrogen atom,which binds to palladium as bidentate N,S-donors forming five-membered chelate rings.The complex formed hydrogen bonding interaction with solvent DMF molecules from the hydrogen of phenylamine to the oxygen of DMF and several intramolecular hydrogen bonds.Pd(Ⅱ) perturbed ligand π-π* transition and metal-to-ligand charge transfer(MLCT) transition are observed in its electronic absorption spectra.The complex exhibits intraligand 1π-π*(IL) state and MLCT state dual fluorescent emissions in organic solvent at room temperature.展开更多
This paper points out that a successful numerical simulation is to construct a correct conceptional model which is very dose to the natural condition. A new model, two dimensional coupled three dimensional model (2D -...This paper points out that a successful numerical simulation is to construct a correct conceptional model which is very dose to the natural condition. A new model, two dimensional coupled three dimensional model (2D -3D ) is presented in the Present paper,which is the most suitable one for the dual - structured - aquifer system. An example of Wenyinghu area is shown.By using the 2D-3D model, a satisfied result of the simulated area is achieved.展开更多
The sulfide-based solid-state electrolytes(SEs)reactivity toward moisture and Li-metal are huge barriers that impede their large-scale manufactu ring and applications in all-solid-state lithium batteries(ASSLBs).Herei...The sulfide-based solid-state electrolytes(SEs)reactivity toward moisture and Li-metal are huge barriers that impede their large-scale manufactu ring and applications in all-solid-state lithium batteries(ASSLBs).Herein,we proposed an Al and O dual-doped strategy for Li_(3)PS_(4)SE to regulate the chemical/electrochemical stability of anionic PS_(4)^(3-)tetrahedra to mitigate structural hydrolysis and parasitic reactions at the SE/Li interface.The optimized Li_(3.08)A_(10.04)P_(0.96)S_(3.92)O_(0.08)SE presents the highestσLi+of 3.27 mS cm^(-1),which is~6.8 times higher than the pristine Li_(3)PS_(4)and excellently inhibits the structural hydrolysis for~25 min@25%humidity at RT.DFT calculations confirmed that the enhanced chemical stability was revealed to the intrinsically stable entities,e.g.,POS33-units.Moreover,Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)SE cycled stably in Li//Li symmetric cell over 1000 h@0.1 mA cm^(-2)/0.1 mA h cm^(-2),could be revealed to Li-Al alloy and Li_(2)Oat SE/Li interface impeding the growth of Li-dendrites during cycling.Resultantly,LNO@LCO/Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)/Li-In cell delivered initial discharge capacities of 129.8 mA h g^(-1)and 83.74%capacity retention over 300 cycles@0.2 C at RT.Moreover,the Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)SE presented>90%capacity retention over 200 and 300 cycles when the cell was tested with LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2)(NCA)cathode material vs.5 and 10 mg cm^(-2)@RT.展开更多
Dual fluorescence and UV absorption of 2′-ethylhexyl 4-(N,N-dimethylamino)benzoate (EHDMAB) were investigated in cationic, non-ionic and anionic micelles. When EHDMAB was solubilized in different micelles, the UV...Dual fluorescence and UV absorption of 2′-ethylhexyl 4-(N,N-dimethylamino)benzoate (EHDMAB) were investigated in cationic, non-ionic and anionic micelles. When EHDMAB was solubilized in different micelles, the UV absorption of EHDMAB was enhanced. Twisted intramolecular charge transfer (TICT) emission with longer wavelength was observed in ionic micelles, whereas TICT emission with shorter wavelength was obtained in non-ionic micelles. In particular, dual fluorescence of EHDMAB was significantly quenched by the positively charged pyridinium ions arranged in the Stern layer of cationic micelles. UV radiation absorbed mainly decays via TICT emission and radiationless deactivation. The dimethylamino group of EHDMAB experiences different polar environments in ionic and non-ionic micelles according to the polarity dependence of TICT emission of EHDMAB in organic solvents. In terms of the molecular structures and sizes of EHDMAB and surfactants, each individual EHDMAB molecule should be buried in micelles with its dimethylamino group toward the polar head groups of different micelles and with its 2′-ethylhexyl chain toward the hydrophobic micellar core. Dynamic fluorescence quenching measurements of EHDMAB provide further support for the location of EHDMAB in different micelles.展开更多
基金funding from National Natural Science Foundation of China(52103053,52102312)Huxiang Young Talents of Hunan Province(2022RC1004)+1 种基金Macao Young Scholars Program(AM2021011)Foundation of State Key Laboratory of Utilization of Woody Oil Resource(GZKF202126)。
文摘The development of aqueous battery with dual mechanisms is now arousing more and more interest.The dual mechanisms of Zn^(2+)(de)intercalation and I^(-)/I_(2)redox bring unexpected effects.Herein,differing from previous studies using Zn I_(2)additive,this work designs an aqueous Bi I_(3)-Zn battery with selfsupplied I^(-).Ex situ tests reveal the conversion of Bi I_(3)into Bi(discharge)and Bi OI(charge)at the 1st cycle and the dissolved I^(-)in electrolyte.The active I^(-)species enhances the specific capacity and discharge medium voltage of electrode as well as improves the generation of Zn dendrite and by-product.Furthermore,the porous hard carbon is introduced to enhance the electronic/ionic conductivity and adsorb iodine species,proven by experimental and theoretical studies.Accordingly,the well-designed Bi I_(3)-Zn battery delivers a high reversible capacity of 182 m A h g^(-1)at 0.2 A g^(-1),an excellent rate capability with 88 m A h g^(-1)at 10 A g^(-1),and an impressive cyclability with 63%capacity retention over 20 K cycles at 10 A g^(-1).An excellent electrochemical performance is obtained even at a high mass loading of 6 mg cm^(-2).Moreover,a flexible quasi-solid-state Bi I_(3)-Zn battery exhibits satisfactory battery performances.This work provides a new idea for designing high-performance aqueous battery with dual mechanisms.
基金supported by the National Basic Research Program of China (973 Program,2007CB815301)NSF (No. 20721001)the Science & Technology Innovation Project of Xiamen University (No. K70025)
文摘The title compound bis(1-(4-(dimethylamino)benzylidene)-4-phenylthiosemicar-bazato)-palladium(Ⅱ)(PdL2) was obtained by reacting 1-(4-(dimethylamino)benzylidene)-4-phenyl-thiosemicarbazide with dichlorobis(benzonitrile)palladium(Ⅱ) in methanol,and its structure was characterized by single-crystal X-ray diffraction.The crystal of PdL2 was obtained in dimethyl-formamide(DMF) solvent with solvent molecules involved in the cell and crystallizes in the monoclinic system,space group C2 with a = 18.485(15),b = 7.090(5),c = 17.595(11) ,β = 121.21(3)o,V = 1972(2) 3,Z = 2,Mr = 847.40,Dc = 1.427 g/cm3,μ = 0.624 mm-1,F(000) = 880,R = 0.0607 and wR = 0.1358.The Pd atom adopts a distorted square planar coordination geometry with two Pd-N and two Pd-S bonds.The ligand loses a proton from its tautomeric thiol form and coordinates to the Pd atom via mercapto sulfur and the imine nitrogen atom,which binds to palladium as bidentate N,S-donors forming five-membered chelate rings.The complex formed hydrogen bonding interaction with solvent DMF molecules from the hydrogen of phenylamine to the oxygen of DMF and several intramolecular hydrogen bonds.Pd(Ⅱ) perturbed ligand π-π* transition and metal-to-ligand charge transfer(MLCT) transition are observed in its electronic absorption spectra.The complex exhibits intraligand 1π-π*(IL) state and MLCT state dual fluorescent emissions in organic solvent at room temperature.
文摘This paper points out that a successful numerical simulation is to construct a correct conceptional model which is very dose to the natural condition. A new model, two dimensional coupled three dimensional model (2D -3D ) is presented in the Present paper,which is the most suitable one for the dual - structured - aquifer system. An example of Wenyinghu area is shown.By using the 2D-3D model, a satisfied result of the simulated area is achieved.
基金supported by the National Natural Science Foundation of China(Nos.21203008,21975025,12274025)the Hainan Province Science and Technology Special Fund(Nos.ZDYF2021SHFZ232,ZDYF2023GXJS022)the Hainan Province Postdoctoral Science Foundation(No.300333)。
文摘The sulfide-based solid-state electrolytes(SEs)reactivity toward moisture and Li-metal are huge barriers that impede their large-scale manufactu ring and applications in all-solid-state lithium batteries(ASSLBs).Herein,we proposed an Al and O dual-doped strategy for Li_(3)PS_(4)SE to regulate the chemical/electrochemical stability of anionic PS_(4)^(3-)tetrahedra to mitigate structural hydrolysis and parasitic reactions at the SE/Li interface.The optimized Li_(3.08)A_(10.04)P_(0.96)S_(3.92)O_(0.08)SE presents the highestσLi+of 3.27 mS cm^(-1),which is~6.8 times higher than the pristine Li_(3)PS_(4)and excellently inhibits the structural hydrolysis for~25 min@25%humidity at RT.DFT calculations confirmed that the enhanced chemical stability was revealed to the intrinsically stable entities,e.g.,POS33-units.Moreover,Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)SE cycled stably in Li//Li symmetric cell over 1000 h@0.1 mA cm^(-2)/0.1 mA h cm^(-2),could be revealed to Li-Al alloy and Li_(2)Oat SE/Li interface impeding the growth of Li-dendrites during cycling.Resultantly,LNO@LCO/Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)/Li-In cell delivered initial discharge capacities of 129.8 mA h g^(-1)and 83.74%capacity retention over 300 cycles@0.2 C at RT.Moreover,the Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)SE presented>90%capacity retention over 200 and 300 cycles when the cell was tested with LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2)(NCA)cathode material vs.5 and 10 mg cm^(-2)@RT.
基金This work was supported by the National Natural Science Foundation of China (No.20335030) and the Innovation Foundation of Science and Technology (No.NWNU-KJCXGC-02-09).
文摘Dual fluorescence and UV absorption of 2′-ethylhexyl 4-(N,N-dimethylamino)benzoate (EHDMAB) were investigated in cationic, non-ionic and anionic micelles. When EHDMAB was solubilized in different micelles, the UV absorption of EHDMAB was enhanced. Twisted intramolecular charge transfer (TICT) emission with longer wavelength was observed in ionic micelles, whereas TICT emission with shorter wavelength was obtained in non-ionic micelles. In particular, dual fluorescence of EHDMAB was significantly quenched by the positively charged pyridinium ions arranged in the Stern layer of cationic micelles. UV radiation absorbed mainly decays via TICT emission and radiationless deactivation. The dimethylamino group of EHDMAB experiences different polar environments in ionic and non-ionic micelles according to the polarity dependence of TICT emission of EHDMAB in organic solvents. In terms of the molecular structures and sizes of EHDMAB and surfactants, each individual EHDMAB molecule should be buried in micelles with its dimethylamino group toward the polar head groups of different micelles and with its 2′-ethylhexyl chain toward the hydrophobic micellar core. Dynamic fluorescence quenching measurements of EHDMAB provide further support for the location of EHDMAB in different micelles.