A novel equilateral triangular patch with a rectangular notch etched to one radiating edge on organic magnetic substrate is proposed for dual frequency operation. Both operations of these dual frequencies arise from t...A novel equilateral triangular patch with a rectangular notch etched to one radiating edge on organic magnetic substrate is proposed for dual frequency operation. Both operations of these dual frequencies arise from the perturbation of TM 10 and TM 11 mode by simply cutting a rectangular notch at the patch bottom. Simulations and experiments have shown the validity of this design. Using an organic magnetic material as the substrate, the antenna exhibits a broader bandwidth of 5.5% and 4.7% at dual-frequencies 1.56 GHz and 2.45 GHz, respectively, as well as a reduced size compared to the dual-frequency patch antennas on non-magnetic material.展开更多
Characteristics of a single-feed dual-frequency bow-tie microstrip antenna are studied. By using the variation method, simple formulas for resonant frequencies of the bow-tie microstrip antenna are derived. It is show...Characteristics of a single-feed dual-frequency bow-tie microstrip antenna are studied. By using the variation method, simple formulas for resonant frequencies of the bow-tie microstrip antenna are derived. It is shown that the dual-frequency ratio can be controlled easily by choosing the parameters of the antenna. This design gives compact antenna size and simple antenna structure. Experimental results are presented, verifying the validity of the design.展开更多
The fifth-generation(5G)wireless technology is the most recent standardization in communication services of interest across the globe.The concept of Multiple-Input-Multiple-Output antenna(MIMO)systems has recently bee...The fifth-generation(5G)wireless technology is the most recent standardization in communication services of interest across the globe.The concept of Multiple-Input-Multiple-Output antenna(MIMO)systems has recently been incorporated to operate at higher frequencies without limitations.This paper addresses,design of a high-gain MIMO antenna that offers a bandwidth of 400 MHz and 2.58 GHz by resonating at 28 and 38 GHz,respectively for 5G millimeter(mm)-wave applications.The proposed design is developed on a RT Duroid 5880 substrate with a single elemental dimension of 9.53×7.85×0.8 mm^(3).The patch antenna is fully grounded and is fed with a 50-ohm stepped impedance microstrip line.It also has an I-shaped slot and two electromagnetically coupled parasitic slotted components.This design is initially constructed as a single-element structure and proceeded to a six-element MIMO antenna configuration with overall dimensions of 50×35×0.8 mm^(3).The simulated prototype is fabricated and measured for analyzing its performance characteristics,along with MIMO antenna diversity performance factors making the proposed antenna suitable for 5G mm-wave and 5G-operated handheld devices.展开更多
文摘A novel equilateral triangular patch with a rectangular notch etched to one radiating edge on organic magnetic substrate is proposed for dual frequency operation. Both operations of these dual frequencies arise from the perturbation of TM 10 and TM 11 mode by simply cutting a rectangular notch at the patch bottom. Simulations and experiments have shown the validity of this design. Using an organic magnetic material as the substrate, the antenna exhibits a broader bandwidth of 5.5% and 4.7% at dual-frequencies 1.56 GHz and 2.45 GHz, respectively, as well as a reduced size compared to the dual-frequency patch antennas on non-magnetic material.
文摘Characteristics of a single-feed dual-frequency bow-tie microstrip antenna are studied. By using the variation method, simple formulas for resonant frequencies of the bow-tie microstrip antenna are derived. It is shown that the dual-frequency ratio can be controlled easily by choosing the parameters of the antenna. This design gives compact antenna size and simple antenna structure. Experimental results are presented, verifying the validity of the design.
文摘The fifth-generation(5G)wireless technology is the most recent standardization in communication services of interest across the globe.The concept of Multiple-Input-Multiple-Output antenna(MIMO)systems has recently been incorporated to operate at higher frequencies without limitations.This paper addresses,design of a high-gain MIMO antenna that offers a bandwidth of 400 MHz and 2.58 GHz by resonating at 28 and 38 GHz,respectively for 5G millimeter(mm)-wave applications.The proposed design is developed on a RT Duroid 5880 substrate with a single elemental dimension of 9.53×7.85×0.8 mm^(3).The patch antenna is fully grounded and is fed with a 50-ohm stepped impedance microstrip line.It also has an I-shaped slot and two electromagnetically coupled parasitic slotted components.This design is initially constructed as a single-element structure and proceeded to a six-element MIMO antenna configuration with overall dimensions of 50×35×0.8 mm^(3).The simulated prototype is fabricated and measured for analyzing its performance characteristics,along with MIMO antenna diversity performance factors making the proposed antenna suitable for 5G mm-wave and 5G-operated handheld devices.