A wideband dual-polarized slot-coupled stacked microstrip antenna with very high isolation and low cross-polarization is presented. To improve isolation between two poiarization ports, the stacked patches are excited ...A wideband dual-polarized slot-coupled stacked microstrip antenna with very high isolation and low cross-polarization is presented. To improve isolation between two poiarization ports, the stacked patches are excited by an open-ended and a T-shaped microstrip lines both via two H-shaped slots placed in a "T" configuration. The measured isolation is better than 40.5 dB over the bandwidth from 8.8 to 9.8 GHz with cross-polarization level less than - 28.5 dB. The measured VSWR ≤ 2 bandwidths reach 20.7 96 and 19.196 at the verrical and horizontal polarization ports, respectively. This antenna is suitable to be used as array elements in spacebome synthetic aperture radars (SAR) and active phased array radars.展开更多
In order to meet the urgent needs in wireless communications, microwave image synthetic aperture radars (SAR), and electronic warfare systems, this dissertation studies several types of broadband dual-polarized plan...In order to meet the urgent needs in wireless communications, microwave image synthetic aperture radars (SAR), and electronic warfare systems, this dissertation studies several types of broadband dual-polarized planar antenna elements and arrays, and proposes a few of novel designs with experimental verification. The main accomplishments reported in the dissertation are as follows.展开更多
We propose a dual-polarized lens antenna system based on isotropic metasurfaces for 12 GHz applications. The metasurface lens is composed of subwavelength unit cells(0.24λ0) with metallic strips etched on the top a...We propose a dual-polarized lens antenna system based on isotropic metasurfaces for 12 GHz applications. The metasurface lens is composed of subwavelength unit cells(0.24λ0) with metallic strips etched on the top and bottom sides of the unit cell, and a cross-slots metallic layer in the middle that serves as the ground. The multimode resonance in the unit cell can realize a large phase shift(covering 0?–360?), and the total transmission efficiency of the lens is above 80%.The feed antenna at the focal point of the lens is a broadband dual-polarized microstrip antenna. Both the simulated and the measured results demonstrate that the dual-polarized lens antenna system can realize a gain of more than 16.1 dB, and an input port isolation of more than 25.0 dB.展开更多
In this study,a compact 2×2 interlaced sequentially rotated dual-polarized dielectric-resonator antenna array is proposed for 5.8 GHz applications.The array is composed of a novel unit elements that are made of r...In this study,a compact 2×2 interlaced sequentially rotated dual-polarized dielectric-resonator antenna array is proposed for 5.8 GHz applications.The array is composed of a novel unit elements that are made of rectangular dielectric resonator(RDR)coupled to an eye slot for generating the orthogonal modes,TEδx 21 and TE1yδ1 to acquire circular polarization(CP)radiation.For the purpose of miniaturization and achieving dual polarized resonance,the array is fed by two interlaced ports and each port excites two radiating elements.The first port feeds horizontal elements to obtain left hand circular polarization(LHCP).The second port feeds vertical elements to obtain right hand circular polarization(RHCP).A quarter-wave length transformer is employed to reduce the attenuation and consequently increase the array gain performance.The 35×35 mm2(0.676λ0×0.676λ0)gains were 8.4 and 8.2 dBi for port 1 and port 2,respectively,with port isolations of−33.51 dB.The design achieves a voltage standing-wave ratio(VSWR)<−10 dB and an axial ratio(AR)<−3 dB bandwidth of 2.48%(5.766 to 5.911 GHz)for LHCP at port 1 and a VSWR<−10 dB and AR<−3 dB bandwidth of 2.28%(5.788 to 5.922 GHz)for RHCP at port 2.The findings of the proposed design validate its use for ISM band applications.展开更多
In this article, a low-profile wideband dual-polarized planar printed dipole antenna, fed by coaxial lines, is investigated for the TD-SCDMA operation. The antenna is composed of two printed dipoles, two pairs of feed...In this article, a low-profile wideband dual-polarized planar printed dipole antenna, fed by coaxial lines, is investigated for the TD-SCDMA operation. The antenna is composed of two printed dipoles, two pairs of feeding coaxial lines and a ground. The single-polarized planar printed rectangular dipole and petal dipole, with the similar configuration, are first studied, exhibiting the potential wideband operation. Two petal dipoles are then cross-arranged to design a dual-polarized planar printed antenna, giving a lower profile and a better bandwidth covering the Chinese TD-SCDMA band (1880-2400 MHz). The dual-polarized antenna is simply excited by two pairs of coaxial feeds. Simulated and measured results show that the antenna achieves a common impedance bandwidth of 42% at both ports, good isolation of more than 25 dB, stable radiation patterns and the gain of about 7 dBi over the operating bandwidth.展开更多
This paper presents a new design of dual polarized aperture coupled printed antenna array. The finite difference time domain (FDTD) analysis of an aperture coupled microstrip element is performed, and the effects ...This paper presents a new design of dual polarized aperture coupled printed antenna array. The finite difference time domain (FDTD) analysis of an aperture coupled microstrip element is performed, and the effects of antenna parameters on its characteristics are obtained to guide the design of the printed array. Then an 8×2 dual polarized array design in X band is introduced with configuration plots. In order to improve its isolation and cross polarization, an outphase displacement feeding technique is adopted in the feed network. Also, the round bends are used instead of conventional right angle bends so as to achieve better VSWR performance. Experimental results are presented, indicating the validity of the design. This dual polarized array can be applied as a sub array of spaceborne SAR systems.展开更多
An 8 × 1-element wideband dual-polarized slot-coupled microstrip antenna array with high isolation and low crosspolarization in X-band is presented. The array antenna offers an impedance bandwidth (VSWR≤2) of ...An 8 × 1-element wideband dual-polarized slot-coupled microstrip antenna array with high isolation and low crosspolarization in X-band is presented. The array antenna offers an impedance bandwidth (VSWR≤2) of 23% and 21% for dual polarization ports, respectively. The measured isolation between two polarization ports is better than 35 dB and the measured cross-polarization level below -25 dB in the main beam over the operation frequency band of 9.35 GHz to 9.75 GHz. This array is well suitable for X-band SAR (synthetic aperture radar) antenna apphcation.展开更多
This paper presents a low profile dual polarized directional antenna composed of loop and dipole arrays mounted on a ground plane with each loops and dipoles being fed independently. Each loop antenna is paired with a...This paper presents a low profile dual polarized directional antenna composed of loop and dipole arrays mounted on a ground plane with each loops and dipoles being fed independently. Each loop antenna is paired with a reflector while each dipole antenna is paired with a director and a reflector. The proposed antenna is intended for an indoor base station (BS) with resonance frequency of 2.4 GHz and capable of producing four orthogonal directional pattern with downward elevation angle equals to 30°;and half power bandwidth (HPBW) less than 80°;in both vertical and horizontal polarization. The reflection characteristics of the loop and dipole arrays are less than -10 dB and the mutual coupling between the vertical and horizontal polarization elements is nearly less than -20 dB. In later progress, the dipole antenna was substituted with printed dipole antenna to achieve a better performance. Both the calculated and measured results demonstrated that the desired radiation patterns were achieved, and the measured results agreed well with the calculated ones. Consequently, a low profile antenna with a thickness of 0.16 λ (20 mm) having the expected radiation pattern is successfully designed.展开更多
An accurate, complete and realistic channel model is re- quired to accurately analyze the system performance of a multiple input multiple output (MIMO) broadband satellite mobile commu- nication system with dual-ort...An accurate, complete and realistic channel model is re- quired to accurately analyze the system performance of a multiple input multiple output (MIMO) broadband satellite mobile commu- nication system with dual-orthogonal polarized antennas (DPAs). In most current studies, the channel characteristic matrix (CCM) is always formed by an independent identical distribution (i.i.d) model of Rayleigh or Rice distribution and nevertheless incomplete and inaccurate to describe a broadband dual-orthogonal polarized MIMO land mobile satellite (BDM-LMS) channel. This paper fo- cuses on establishing the BDM-LMS channel statistical model, which combines the 4-state broadband LMS channel model, the time selective fading features, the channel covariance information (CCI) channel model and polarization correlations between an- tennas. The modeling steps of the channel model are introduced. The main emphasis is placed on the effects of the factors, such as antenna numbers, temporal correlations, terminal environments, elevation angles and polarization correlations between the DPAs, on the channel capacity in the BDM-LMS system. Many simulation results are provided to illustrate the effects of these factors through comparisons of the transmit rate, ergodic capacity and outage capacity with different factor values. Besides, the MIMO outage capacity advantages, which indicate the benefits of MIMO com- pared with a single input single output (SISO) system under the same channel condition, are also studied under i.i.d or BDM-LMS channel.展开更多
This paper investigates a corner fed microstrip patch antenna by means of the cavity model with proposed feed modeling. The input impedance and radiation patterns for a corner feed are calculated. The mutual coupling...This paper investigates a corner fed microstrip patch antenna by means of the cavity model with proposed feed modeling. The input impedance and radiation patterns for a corner feed are calculated. The mutual coupling between two corner feeds is investigated. An improvement in mutual coupling has been found for corner feeds relative to edge feeds, which is helpful for the design of dual polarized antenna arrays in wireless communication and radar applications.展开更多
The magneto-electric dipole antenna is a kind of complementary antenna composed of a planar electric dipole and a shorted patch antenna. It has excellent electrical characteristics including wide impedance bandwidth, ...The magneto-electric dipole antenna is a kind of complementary antenna composed of a planar electric dipole and a shorted patch antenna. It has excellent electrical characteristics including wide impedance bandwidth, low cross-polarization, low back lobe radiation, nearly identical E-plane and H-plane patterns, stable radiation pattern, and steady antenna gain over the operating frequency range. In this paper, the basic characteristics of a linearly polarized magneto-electric dipole antenna are reviewed, and a dual-polarized antenna element based on the magneto-electric dipole is presented. The design of a conical beam wideband antenna with horizontal polarization is also described. These antennas have practical applications in modern 2G, 3G, LTE, WiFi, and WiMax wireless communication systems.展开更多
A polarized reconfigurable patch antenna is proposed in this paper.The proposed antenna is a dual cross-polarized patch antenna with a programmable power divider.The programmable power divider consists of two branch l...A polarized reconfigurable patch antenna is proposed in this paper.The proposed antenna is a dual cross-polarized patch antenna with a programmable power divider.The programmable power divider consists of two branch line couplers(BLC)and a digital phase shifter.By adjusting the phase of the phase shifter,the power ratio of the power divider can be changed,and thus the feed power to the antenna input port can be changed to reconfigure the antenna polarization.The phase-controlled power divider and the cross dual-polarized antenna are designed,fabricated and tested,and then they are combined to realize the polarized reconfigurable antenna.By moving the phase of the phase shifter,the antenna polarization is reconfigured into vertical polarization(VP),horizontal polarization(HP),and circular polarization(CP).The test is conducted at the frequency of 915 MHz,which is widely used for simultaneous wireless information and power transfer(SWIPT)in radio-frequency identification(RFID)applications.The results demonstrate that when the antenna is configured as CP,the axial ratio of the antenna is less than 3 dB,and when the antenna is configured as HP or VP,the axial ratio of the antenna exceeds 20 dB.Finally,experiments are conducted to verify the influence of antenna polarization changes on wireless power transmitting.As expected,the reconfigured antenna polarization can help improve the power transmitting efficiency.展开更多
文摘A wideband dual-polarized slot-coupled stacked microstrip antenna with very high isolation and low cross-polarization is presented. To improve isolation between two poiarization ports, the stacked patches are excited by an open-ended and a T-shaped microstrip lines both via two H-shaped slots placed in a "T" configuration. The measured isolation is better than 40.5 dB over the bandwidth from 8.8 to 9.8 GHz with cross-polarization level less than - 28.5 dB. The measured VSWR ≤ 2 bandwidths reach 20.7 96 and 19.196 at the verrical and horizontal polarization ports, respectively. This antenna is suitable to be used as array elements in spacebome synthetic aperture radars (SAR) and active phased array radars.
文摘In order to meet the urgent needs in wireless communications, microwave image synthetic aperture radars (SAR), and electronic warfare systems, this dissertation studies several types of broadband dual-polarized planar antenna elements and arrays, and proposes a few of novel designs with experimental verification. The main accomplishments reported in the dissertation are as follows.
基金Project supported by the Open Research Program of the State Key Laboratory of Millimeter Waves,China(Grant No.K201926)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,Chinathe Nanjing University of Posts and Telecommunications Scientific Foundation,China(Grant No.NY215137)
文摘We propose a dual-polarized lens antenna system based on isotropic metasurfaces for 12 GHz applications. The metasurface lens is composed of subwavelength unit cells(0.24λ0) with metallic strips etched on the top and bottom sides of the unit cell, and a cross-slots metallic layer in the middle that serves as the ground. The multimode resonance in the unit cell can realize a large phase shift(covering 0?–360?), and the total transmission efficiency of the lens is above 80%.The feed antenna at the focal point of the lens is a broadband dual-polarized microstrip antenna. Both the simulated and the measured results demonstrate that the dual-polarized lens antenna system can realize a gain of more than 16.1 dB, and an input port isolation of more than 25.0 dB.
基金The author would like to thank the Deanship of Scientific Research at Majmaah University for supporting this work under Project Number R-2022-71.
文摘In this study,a compact 2×2 interlaced sequentially rotated dual-polarized dielectric-resonator antenna array is proposed for 5.8 GHz applications.The array is composed of a novel unit elements that are made of rectangular dielectric resonator(RDR)coupled to an eye slot for generating the orthogonal modes,TEδx 21 and TE1yδ1 to acquire circular polarization(CP)radiation.For the purpose of miniaturization and achieving dual polarized resonance,the array is fed by two interlaced ports and each port excites two radiating elements.The first port feeds horizontal elements to obtain left hand circular polarization(LHCP).The second port feeds vertical elements to obtain right hand circular polarization(RHCP).A quarter-wave length transformer is employed to reduce the attenuation and consequently increase the array gain performance.The 35×35 mm2(0.676λ0×0.676λ0)gains were 8.4 and 8.2 dBi for port 1 and port 2,respectively,with port isolations of−33.51 dB.The design achieves a voltage standing-wave ratio(VSWR)<−10 dB and an axial ratio(AR)<−3 dB bandwidth of 2.48%(5.766 to 5.911 GHz)for LHCP at port 1 and a VSWR<−10 dB and AR<−3 dB bandwidth of 2.28%(5.788 to 5.922 GHz)for RHCP at port 2.The findings of the proposed design validate its use for ISM band applications.
文摘In this article, a low-profile wideband dual-polarized planar printed dipole antenna, fed by coaxial lines, is investigated for the TD-SCDMA operation. The antenna is composed of two printed dipoles, two pairs of feeding coaxial lines and a ground. The single-polarized planar printed rectangular dipole and petal dipole, with the similar configuration, are first studied, exhibiting the potential wideband operation. Two petal dipoles are then cross-arranged to design a dual-polarized planar printed antenna, giving a lower profile and a better bandwidth covering the Chinese TD-SCDMA band (1880-2400 MHz). The dual-polarized antenna is simply excited by two pairs of coaxial feeds. Simulated and measured results show that the antenna achieves a common impedance bandwidth of 42% at both ports, good isolation of more than 25 dB, stable radiation patterns and the gain of about 7 dBi over the operating bandwidth.
文摘This paper presents a new design of dual polarized aperture coupled printed antenna array. The finite difference time domain (FDTD) analysis of an aperture coupled microstrip element is performed, and the effects of antenna parameters on its characteristics are obtained to guide the design of the printed array. Then an 8×2 dual polarized array design in X band is introduced with configuration plots. In order to improve its isolation and cross polarization, an outphase displacement feeding technique is adopted in the feed network. Also, the round bends are used instead of conventional right angle bends so as to achieve better VSWR performance. Experimental results are presented, indicating the validity of the design. This dual polarized array can be applied as a sub array of spaceborne SAR systems.
基金Project supported by the Specialized Research Fund for the Doctoral Program of High Education of China (Grant No.20050280016)the Shanghai Leading Academic Discipline Project (Grant No.T0102)
文摘An 8 × 1-element wideband dual-polarized slot-coupled microstrip antenna array with high isolation and low crosspolarization in X-band is presented. The array antenna offers an impedance bandwidth (VSWR≤2) of 23% and 21% for dual polarization ports, respectively. The measured isolation between two polarization ports is better than 35 dB and the measured cross-polarization level below -25 dB in the main beam over the operation frequency band of 9.35 GHz to 9.75 GHz. This array is well suitable for X-band SAR (synthetic aperture radar) antenna apphcation.
文摘This paper presents a low profile dual polarized directional antenna composed of loop and dipole arrays mounted on a ground plane with each loops and dipoles being fed independently. Each loop antenna is paired with a reflector while each dipole antenna is paired with a director and a reflector. The proposed antenna is intended for an indoor base station (BS) with resonance frequency of 2.4 GHz and capable of producing four orthogonal directional pattern with downward elevation angle equals to 30°;and half power bandwidth (HPBW) less than 80°;in both vertical and horizontal polarization. The reflection characteristics of the loop and dipole arrays are less than -10 dB and the mutual coupling between the vertical and horizontal polarization elements is nearly less than -20 dB. In later progress, the dipole antenna was substituted with printed dipole antenna to achieve a better performance. Both the calculated and measured results demonstrated that the desired radiation patterns were achieved, and the measured results agreed well with the calculated ones. Consequently, a low profile antenna with a thickness of 0.16 λ (20 mm) having the expected radiation pattern is successfully designed.
基金supported by the National Natural Science Foundation of China(61301105)the China Postdoctoral Science Foundation Funded Project(2013M531351)
文摘An accurate, complete and realistic channel model is re- quired to accurately analyze the system performance of a multiple input multiple output (MIMO) broadband satellite mobile commu- nication system with dual-orthogonal polarized antennas (DPAs). In most current studies, the channel characteristic matrix (CCM) is always formed by an independent identical distribution (i.i.d) model of Rayleigh or Rice distribution and nevertheless incomplete and inaccurate to describe a broadband dual-orthogonal polarized MIMO land mobile satellite (BDM-LMS) channel. This paper fo- cuses on establishing the BDM-LMS channel statistical model, which combines the 4-state broadband LMS channel model, the time selective fading features, the channel covariance information (CCI) channel model and polarization correlations between an- tennas. The modeling steps of the channel model are introduced. The main emphasis is placed on the effects of the factors, such as antenna numbers, temporal correlations, terminal environments, elevation angles and polarization correlations between the DPAs, on the channel capacity in the BDM-LMS system. Many simulation results are provided to illustrate the effects of these factors through comparisons of the transmit rate, ergodic capacity and outage capacity with different factor values. Besides, the MIMO outage capacity advantages, which indicate the benefits of MIMO com- pared with a single input single output (SISO) system under the same channel condition, are also studied under i.i.d or BDM-LMS channel.
文摘This paper investigates a corner fed microstrip patch antenna by means of the cavity model with proposed feed modeling. The input impedance and radiation patterns for a corner feed are calculated. The mutual coupling between two corner feeds is investigated. An improvement in mutual coupling has been found for corner feeds relative to edge feeds, which is helpful for the design of dual polarized antenna arrays in wireless communication and radar applications.
文摘The magneto-electric dipole antenna is a kind of complementary antenna composed of a planar electric dipole and a shorted patch antenna. It has excellent electrical characteristics including wide impedance bandwidth, low cross-polarization, low back lobe radiation, nearly identical E-plane and H-plane patterns, stable radiation pattern, and steady antenna gain over the operating frequency range. In this paper, the basic characteristics of a linearly polarized magneto-electric dipole antenna are reviewed, and a dual-polarized antenna element based on the magneto-electric dipole is presented. The design of a conical beam wideband antenna with horizontal polarization is also described. These antennas have practical applications in modern 2G, 3G, LTE, WiFi, and WiMax wireless communication systems.
文摘A polarized reconfigurable patch antenna is proposed in this paper.The proposed antenna is a dual cross-polarized patch antenna with a programmable power divider.The programmable power divider consists of two branch line couplers(BLC)and a digital phase shifter.By adjusting the phase of the phase shifter,the power ratio of the power divider can be changed,and thus the feed power to the antenna input port can be changed to reconfigure the antenna polarization.The phase-controlled power divider and the cross dual-polarized antenna are designed,fabricated and tested,and then they are combined to realize the polarized reconfigurable antenna.By moving the phase of the phase shifter,the antenna polarization is reconfigured into vertical polarization(VP),horizontal polarization(HP),and circular polarization(CP).The test is conducted at the frequency of 915 MHz,which is widely used for simultaneous wireless information and power transfer(SWIPT)in radio-frequency identification(RFID)applications.The results demonstrate that when the antenna is configured as CP,the axial ratio of the antenna is less than 3 dB,and when the antenna is configured as HP or VP,the axial ratio of the antenna exceeds 20 dB.Finally,experiments are conducted to verify the influence of antenna polarization changes on wireless power transmitting.As expected,the reconfigured antenna polarization can help improve the power transmitting efficiency.