Currently, domestic and abroad scholars put more attention on contra-rotating dual-rotor axial fan. But there is less scholars study on asymmetric dual-rotor small axial fan, which is one of the contra-rotating dual-r...Currently, domestic and abroad scholars put more attention on contra-rotating dual-rotor axial fan. But there is less scholars study on asymmetric dual-rotor small axial fan, which is one of the contra-rotating dual-rotor axial fans. Like axial fan, many factors have influence on the performance of the asymmetric dual-rotor small axial flow fan, such as the wheel hub ratio, blade shape, blade number, stagger angle and the tip clearance. Because wheel hub ratio has great impact on the performance of the fan, we choose the size of wheel hub ratio as a variable factor to study the model change. There is a different wheel hub ratio between front stage impeller and rear stage of asymmetric dual-rotor small axial fan, so it is very beneficial to select the greater wind area that the fan area of external diameter minuses the area occupied by the blades and the hub as front stage impeller. In this paper, the hub-ratio of front stage impeller is 0.72, and that of rear stage is 0.72, 0.67 and 0.62 respectively along with the front stage impeller. Three kinds of models with different hub ratio of rear stage are simulated using the CFD software and the static characteristics are obtained. Based on the experimental test results, the internal flow field of the asymmetric dual-rotor small axial fan is analyzed in detail, the impact trends of different hub-ratio on the performance of asymmetric dual-rotor small axial fan are obtained and the argument of structure optimization for dual-rotor small axial fan is provided.展开更多
An investigation is performed to study the convective heat transfer performance under dual piezoelectric fans. Three main aspects are involved in the current study. Firstly, vibration tests for dual specific piezoelec...An investigation is performed to study the convective heat transfer performance under dual piezoelectric fans. Three main aspects are involved in the current study. Firstly, vibration tests for dual specific piezoelectric fans actuating at the first-mode resonant frequency are conducted to illustrate the influence roles of vibrating phase difference and fan-to-fan pitch on the piezoelectric fan vibration amplitude. Secondly, heat transfer measurements are made to compare the heat transfer among single fan, dual fans in-phase and dual fans out-of-phase. Thirdly, three-dimensional numerical simulations are conducted to reveal the influence mechanism of dual piezoelectric fans on heat transfer. The results show that, the vibrating phase difference of dual fans has nearly no influence on the displacement velocity and amplitude of piezoelectric fan related to single fan once the dimensionless pitch(P/W) is beyond 1.2. The dual piezoelectric fans produce nearly the same peak heat transfer coefficient as that of single fan case.Of particular is that the dual fans operating in-phase produce more favorable heat transfer than the dual fans operating out-of-phase,especially in the gap zone between dual fans. Due to the interaction between dual fans, the streaming flow induced by one vibrating fan suffers the action of sweeping flow of another vibrating fan when they operate out-of-phase. While for the dual fans operating in-phase, the streaming flows induced by vibrating fans merge together to form stronger wall jet flow in the region between two fans.展开更多
文摘Currently, domestic and abroad scholars put more attention on contra-rotating dual-rotor axial fan. But there is less scholars study on asymmetric dual-rotor small axial fan, which is one of the contra-rotating dual-rotor axial fans. Like axial fan, many factors have influence on the performance of the asymmetric dual-rotor small axial flow fan, such as the wheel hub ratio, blade shape, blade number, stagger angle and the tip clearance. Because wheel hub ratio has great impact on the performance of the fan, we choose the size of wheel hub ratio as a variable factor to study the model change. There is a different wheel hub ratio between front stage impeller and rear stage of asymmetric dual-rotor small axial fan, so it is very beneficial to select the greater wind area that the fan area of external diameter minuses the area occupied by the blades and the hub as front stage impeller. In this paper, the hub-ratio of front stage impeller is 0.72, and that of rear stage is 0.72, 0.67 and 0.62 respectively along with the front stage impeller. Three kinds of models with different hub ratio of rear stage are simulated using the CFD software and the static characteristics are obtained. Based on the experimental test results, the internal flow field of the asymmetric dual-rotor small axial fan is analyzed in detail, the impact trends of different hub-ratio on the performance of asymmetric dual-rotor small axial fan are obtained and the argument of structure optimization for dual-rotor small axial fan is provided.
基金supported by the Nanjing University of Aeronautics and Astronautics Research Funding(Grant No.NS2014018)
文摘An investigation is performed to study the convective heat transfer performance under dual piezoelectric fans. Three main aspects are involved in the current study. Firstly, vibration tests for dual specific piezoelectric fans actuating at the first-mode resonant frequency are conducted to illustrate the influence roles of vibrating phase difference and fan-to-fan pitch on the piezoelectric fan vibration amplitude. Secondly, heat transfer measurements are made to compare the heat transfer among single fan, dual fans in-phase and dual fans out-of-phase. Thirdly, three-dimensional numerical simulations are conducted to reveal the influence mechanism of dual piezoelectric fans on heat transfer. The results show that, the vibrating phase difference of dual fans has nearly no influence on the displacement velocity and amplitude of piezoelectric fan related to single fan once the dimensionless pitch(P/W) is beyond 1.2. The dual piezoelectric fans produce nearly the same peak heat transfer coefficient as that of single fan case.Of particular is that the dual fans operating in-phase produce more favorable heat transfer than the dual fans operating out-of-phase,especially in the gap zone between dual fans. Due to the interaction between dual fans, the streaming flow induced by one vibrating fan suffers the action of sweeping flow of another vibrating fan when they operate out-of-phase. While for the dual fans operating in-phase, the streaming flows induced by vibrating fans merge together to form stronger wall jet flow in the region between two fans.