An investigation is performed to study the convective heat transfer performance under dual piezoelectric fans. Three main aspects are involved in the current study. Firstly, vibration tests for dual specific piezoelec...An investigation is performed to study the convective heat transfer performance under dual piezoelectric fans. Three main aspects are involved in the current study. Firstly, vibration tests for dual specific piezoelectric fans actuating at the first-mode resonant frequency are conducted to illustrate the influence roles of vibrating phase difference and fan-to-fan pitch on the piezoelectric fan vibration amplitude. Secondly, heat transfer measurements are made to compare the heat transfer among single fan, dual fans in-phase and dual fans out-of-phase. Thirdly, three-dimensional numerical simulations are conducted to reveal the influence mechanism of dual piezoelectric fans on heat transfer. The results show that, the vibrating phase difference of dual fans has nearly no influence on the displacement velocity and amplitude of piezoelectric fan related to single fan once the dimensionless pitch(P/W) is beyond 1.2. The dual piezoelectric fans produce nearly the same peak heat transfer coefficient as that of single fan case.Of particular is that the dual fans operating in-phase produce more favorable heat transfer than the dual fans operating out-of-phase,especially in the gap zone between dual fans. Due to the interaction between dual fans, the streaming flow induced by one vibrating fan suffers the action of sweeping flow of another vibrating fan when they operate out-of-phase. While for the dual fans operating in-phase, the streaming flows induced by vibrating fans merge together to form stronger wall jet flow in the region between two fans.展开更多
基金supported by the Nanjing University of Aeronautics and Astronautics Research Funding(Grant No.NS2014018)
文摘An investigation is performed to study the convective heat transfer performance under dual piezoelectric fans. Three main aspects are involved in the current study. Firstly, vibration tests for dual specific piezoelectric fans actuating at the first-mode resonant frequency are conducted to illustrate the influence roles of vibrating phase difference and fan-to-fan pitch on the piezoelectric fan vibration amplitude. Secondly, heat transfer measurements are made to compare the heat transfer among single fan, dual fans in-phase and dual fans out-of-phase. Thirdly, three-dimensional numerical simulations are conducted to reveal the influence mechanism of dual piezoelectric fans on heat transfer. The results show that, the vibrating phase difference of dual fans has nearly no influence on the displacement velocity and amplitude of piezoelectric fan related to single fan once the dimensionless pitch(P/W) is beyond 1.2. The dual piezoelectric fans produce nearly the same peak heat transfer coefficient as that of single fan case.Of particular is that the dual fans operating in-phase produce more favorable heat transfer than the dual fans operating out-of-phase,especially in the gap zone between dual fans. Due to the interaction between dual fans, the streaming flow induced by one vibrating fan suffers the action of sweeping flow of another vibrating fan when they operate out-of-phase. While for the dual fans operating in-phase, the streaming flows induced by vibrating fans merge together to form stronger wall jet flow in the region between two fans.