To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)...To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)is proposed.In this multi-PCNN fusion scheme,the auxiliary PCNN which captures the characteristics of feature image extracting from the infrared image is used to modulate the main PCNN,whose input could be original infrared image.Meanwhile,to make the PCNN fusion effect consistent with the human vision system,Laplacian energy is adopted to obtain the value of adaptive linking strength in PCNN.After that,the original dual band infrared images are reconstructed by using a weight fusion rule with the fire mapping images generated by the main PCNNs to obtain the fused image.Compared to wavelet transforms,Laplacian pyramids and traditional multi-PCNNs,fusion images based on our method have more information,rich details and clear edges.展开更多
The celebrated Weierstrass Approximation Theorem (1885) heralded intermittent interest in polynomial approximation, which continues unabated even as of today. The great Russian mathematician Bernstein, in 1912, not on...The celebrated Weierstrass Approximation Theorem (1885) heralded intermittent interest in polynomial approximation, which continues unabated even as of today. The great Russian mathematician Bernstein, in 1912, not only provided an interesting proof of the Weierstrass’ theorem, but also displayed a sequence of the polynomials which approximate the given function . An efficient ‘Combinatorial-Probabilistic Dual-Fusion’ version of the modification of Bernstein’s Polynomial Operator is proposed. The potential of the aforesaid improvement is tried to be brought forth and illustrated through an empirical study, for which the function is assumed to be known in the sense of simulation.展开更多
Objective: To explore the significance of dual-energy CT non-linear fusion technique in improving the quality of CTA image of renal cancer. Methods: The CTA images of 100 patients who had been confirmed by pathology a...Objective: To explore the significance of dual-energy CT non-linear fusion technique in improving the quality of CTA image of renal cancer. Methods: The CTA images of 100 patients who had been confirmed by pathology as renal cancer were collected and were randomly divided into experimental group and control group with 50 cases respectively. The two groups of patients were treated with iodine concentration of 300 mg/ml and 350 mg/ml non-ionic contrast agent, with a dosage of 1.5 ml/kg and an injection rate of 4 ml/s. The contrast agent intelligently tracking method was adopted bolus. The control group used the conventional CTA scanning, with a reference tube voltage/tube current of 100 kv/ref150 mas. The experimental group adopted the double energy scanning, with ball tube A and ball tube B. The reference tube voltage/tube current was 100 kv/ref250 mas and sn150 kv/ref125 mas respectively. The images of the experimental group were non-linear fused to obtain the Mono+ 55 kev single-energy images. The CT value, SNR contrast ratio of the abdominal aorta, renal artery and tumor tissue of the experimental group images and the 100 KV images and the Mono+ 55 kev images of the control group were compared. The objective evaluation and subjective evaluation of the image quality of the three groups of images was performed. Results: The results showed that the 100 kV images of the experimental group were statistically different from those of the control group (P05) in CT value, SNR and CNR (P 0.05). And there was no statistically significant difference between the non-linear fusion single-energy Mono+ 55 kev images and the control group images in CT value, SNR and CNR (P > 0.05). The subjective evaluation of image quality showed that there was no significant difference between Mono+ 55 kev images and control group images, and the quality of Mono+ 55 kev images was higher than that of experimental group 100 kV images. Conclusion: The dual-energy CT non-linear fusion technique can improve the quality of CTA image in patients with renal cancer, and it is possible to obtain high quality CTA images with low iodine concentration contrast agent.展开更多
The concept of the liquid Li17Pb83 and Helium gas dual-cooled Fuel Breeding Blanket (FBB) for the Fusion-Driven sub-critical System (FDS) is presented and analyzed. Taking self-sustaining tritium (TBR >1.05) and an...The concept of the liquid Li17Pb83 and Helium gas dual-cooled Fuel Breeding Blanket (FBB) for the Fusion-Driven sub-critical System (FDS) is presented and analyzed. Taking self-sustaining tritium (TBR >1.05) and annual output of 100 kg or more fissile 239Pu (FBR > 0.238) as objective parameters, and based on the three-dimensional Monte Carlo neutron-photon transport code MCNP/4A, a neutronics-optimizated calculation of different cases was carried out and the concept is proved feasible. In addition, the total breeding ratio ( BR = TBR + FBR ) is listed corresponding to different cases.展开更多
Manhole cover defect recognition is of significant practical importance as it can accurately identify damaged or missing covers, enabling timely replacement and maintenance. Traditional manhole cover detection techniq...Manhole cover defect recognition is of significant practical importance as it can accurately identify damaged or missing covers, enabling timely replacement and maintenance. Traditional manhole cover detection techniques primarily focus on detecting the presence of covers rather than classifying the types of defects. However, manhole cover defects exhibit small inter-class feature differences and large intra-class feature variations, which makes their recognition challenging. To improve the classification of manhole cover defect types, we propose a Progressive Dual-Branch Feature Fusion Network (PDBFFN). The baseline backbone network adopts a multi-stage hierarchical architecture design using Res-Net50 as the visual feature extractor, from which both local and global information is obtained. Additionally, a Feature Enhancement Module (FEM) and a Fusion Module (FM) are introduced to enhance the network’s ability to learn critical features. Experimental results demonstrate that our model achieves a classification accuracy of 82.6% on a manhole cover defect dataset, outperforming several state-of-the-art fine-grained image classification models.展开更多
A frame is an orthonormal basis-like collection of vectors in a Hilbert space, but need not be a basis or orthonormal. A fusion frame (frame of subspaces) is a frame-like collection of subspaces in a Hilbert space, ...A frame is an orthonormal basis-like collection of vectors in a Hilbert space, but need not be a basis or orthonormal. A fusion frame (frame of subspaces) is a frame-like collection of subspaces in a Hilbert space, thereby constructing a frame for the whole space by joining sequences of frames for subspaces. Moreover the notion of fusion frames provide a framework for applications and providing efficient and robust information processing algorithms.In this paper we study the conditions under which removing an element from a fusion frame, again we obtain another fusion frame. We give another proof of [5, Corollary 3.3(iii)] with extra information about the bounds.展开更多
This work concerns the field of diagnostic aids that facilitate diagnostic decisions for practitioners, especially in medical imaging. The pathology in question, in this study, is the renal cyst. The diagnostic proces...This work concerns the field of diagnostic aids that facilitate diagnostic decisions for practitioners, especially in medical imaging. The pathology in question, in this study, is the renal cyst. The diagnostic process starts from simultaneous acquisitions of double isotope (Teechnetium-99 m and Iodine-131) scintigraphic images. Then, the platform allows the fusion of these images and the calculation of a pathological parameter that permits the characterization of the state of the dysplasic kidney by comparing it with the normal one. The final result is fusion images annotated by the pathological parameter value.展开更多
Because previous methods can not identify underlying image features from noises effectively, the updated image fusion schemes will be degraded when inputs are corrupted with noise. The perceptual salient image feature...Because previous methods can not identify underlying image features from noises effectively, the updated image fusion schemes will be degraded when inputs are corrupted with noise. The perceptual salient image features often manifest some geometric structures, while noise dominated images are less structured. Based on complex wavelet transform, a structurization information metric is formulated by means of the Von Neumann entropy. The formulated metric can distinguish image features from noise very well. During the fusion process, the metric is employed to weight all fusion inputs. As a result, the perceptual meaningful inputs are enhanced while the noise inputs are de-emphasized adaptively. Comparing several image fusion schemes subjectively and objectively shows the good performance of the new scheme.展开更多
真实场景点云不仅具有点云的空间几何信息,还具有三维物体的颜色信息,现有的网络无法有效利用真实场景的局部特征以及空间几何特征信息,因此提出了一种双通道特征融合的真实场景点云语义分割方法DCFNet(dual-channel feature fusion of ...真实场景点云不仅具有点云的空间几何信息,还具有三维物体的颜色信息,现有的网络无法有效利用真实场景的局部特征以及空间几何特征信息,因此提出了一种双通道特征融合的真实场景点云语义分割方法DCFNet(dual-channel feature fusion of real scene for point cloud semantic segmentation)可用于不同场景下的室内外场景语义分割。更具体地说,为了解决不能充分提取真实场景点云颜色信息的问题,该方法采用上下两个输入通道,通道均采用相同的特征提取网络结构,其中上通道的输入是完整RGB颜色和点云坐标信息,该通道主要关注于复杂物体对象场景特征,下通道仅输入点云坐标信息,该通道主要关注于点云的空间几何特征;在每个通道中为了更好地提取局部与全局信息,改善网络性能,引入了层间融合模块和Transformer通道特征扩充模块;同时,针对现有的三维点云语义分割方法缺乏关注局部特征与全局特征的联系,导致对复杂场景的分割效果不佳的问题,对上下两个通道所提取的特征通过DCFFS(dual-channel feature fusion segmentation)模块进行融合,并对真实场景进行语义分割。对室内复杂场景和大规模室内外场景点云分割基准进行了实验,实验结果表明,提出的DCFNet分割方法在S3DIS Area5室内场景数据集以及STPLS3D室外场景数据集上,平均交并比(MIOU)分别达到71.18%和48.87%,平均准确率(MACC)和整体准确率(OACC)分别达到77.01%与86.91%,实现了真实场景的高精度点云语义分割。展开更多
On-orbit servicing, such as spacecraft maintenance, on-orbit assembly, refueling, and de-orbiting, can reduce the cost of space missions, improve the performance of spacecraft, and extend its life span. The relative s...On-orbit servicing, such as spacecraft maintenance, on-orbit assembly, refueling, and de-orbiting, can reduce the cost of space missions, improve the performance of spacecraft, and extend its life span. The relative state between the servicing and target spacecraft is vital for on-orbit servicing missions, especially the final approaching stage. The major challenge of this stage is that the observed features of the target are incomplete or are constantly changing due to the short distance and limited Field of View (FOV) of camera. Different from cooperative spacecraft, non-cooperative target does not have artificial feature markers. Therefore, contour features, including triangle supports of solar array, docking ring, and corner points of the spacecraft body, are used as the measuring features. To overcome the drawback of FOV limitation and imaging ambiguity of the camera, a "selfie stick" structure and a self-calibration strategy were implemented, ensuring that part of the contour features could be observed precisely when the two spacecraft approached each other. The observed features were constantly changing as the relative distance shortened. It was difficult to build a unified measurement model for different types of features, including points, line segments, and circle. Therefore, dual quaternion was implemented to model the relative dynamics and measuring features. With the consideration of state uncertainty of the target, a fuzzy adaptive strong tracking filter( FASTF) combining fuzzy logic adaptive controller (FLAC) with strong tracking filter(STF) was designed to robustly estimate the relative states between the servicing spacecraft and the target. Finally, the effectiveness of the strategy was verified by mathematical simulation. The achievement of this research provides a theoretical and technical foundation for future on-orbit servicing missions.展开更多
基金Supported by the National Natural Science Foundation of China(60905012,60572058)
文摘To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)is proposed.In this multi-PCNN fusion scheme,the auxiliary PCNN which captures the characteristics of feature image extracting from the infrared image is used to modulate the main PCNN,whose input could be original infrared image.Meanwhile,to make the PCNN fusion effect consistent with the human vision system,Laplacian energy is adopted to obtain the value of adaptive linking strength in PCNN.After that,the original dual band infrared images are reconstructed by using a weight fusion rule with the fire mapping images generated by the main PCNNs to obtain the fused image.Compared to wavelet transforms,Laplacian pyramids and traditional multi-PCNNs,fusion images based on our method have more information,rich details and clear edges.
文摘The celebrated Weierstrass Approximation Theorem (1885) heralded intermittent interest in polynomial approximation, which continues unabated even as of today. The great Russian mathematician Bernstein, in 1912, not only provided an interesting proof of the Weierstrass’ theorem, but also displayed a sequence of the polynomials which approximate the given function . An efficient ‘Combinatorial-Probabilistic Dual-Fusion’ version of the modification of Bernstein’s Polynomial Operator is proposed. The potential of the aforesaid improvement is tried to be brought forth and illustrated through an empirical study, for which the function is assumed to be known in the sense of simulation.
文摘Objective: To explore the significance of dual-energy CT non-linear fusion technique in improving the quality of CTA image of renal cancer. Methods: The CTA images of 100 patients who had been confirmed by pathology as renal cancer were collected and were randomly divided into experimental group and control group with 50 cases respectively. The two groups of patients were treated with iodine concentration of 300 mg/ml and 350 mg/ml non-ionic contrast agent, with a dosage of 1.5 ml/kg and an injection rate of 4 ml/s. The contrast agent intelligently tracking method was adopted bolus. The control group used the conventional CTA scanning, with a reference tube voltage/tube current of 100 kv/ref150 mas. The experimental group adopted the double energy scanning, with ball tube A and ball tube B. The reference tube voltage/tube current was 100 kv/ref250 mas and sn150 kv/ref125 mas respectively. The images of the experimental group were non-linear fused to obtain the Mono+ 55 kev single-energy images. The CT value, SNR contrast ratio of the abdominal aorta, renal artery and tumor tissue of the experimental group images and the 100 KV images and the Mono+ 55 kev images of the control group were compared. The objective evaluation and subjective evaluation of the image quality of the three groups of images was performed. Results: The results showed that the 100 kV images of the experimental group were statistically different from those of the control group (P05) in CT value, SNR and CNR (P 0.05). And there was no statistically significant difference between the non-linear fusion single-energy Mono+ 55 kev images and the control group images in CT value, SNR and CNR (P > 0.05). The subjective evaluation of image quality showed that there was no significant difference between Mono+ 55 kev images and control group images, and the quality of Mono+ 55 kev images was higher than that of experimental group 100 kV images. Conclusion: The dual-energy CT non-linear fusion technique can improve the quality of CTA image in patients with renal cancer, and it is possible to obtain high quality CTA images with low iodine concentration contrast agent.
基金This work was supported by the Chinese Academy of Sciences and the National Natural Science Foundation of China No.10175068.
文摘The concept of the liquid Li17Pb83 and Helium gas dual-cooled Fuel Breeding Blanket (FBB) for the Fusion-Driven sub-critical System (FDS) is presented and analyzed. Taking self-sustaining tritium (TBR >1.05) and annual output of 100 kg or more fissile 239Pu (FBR > 0.238) as objective parameters, and based on the three-dimensional Monte Carlo neutron-photon transport code MCNP/4A, a neutronics-optimizated calculation of different cases was carried out and the concept is proved feasible. In addition, the total breeding ratio ( BR = TBR + FBR ) is listed corresponding to different cases.
文摘Manhole cover defect recognition is of significant practical importance as it can accurately identify damaged or missing covers, enabling timely replacement and maintenance. Traditional manhole cover detection techniques primarily focus on detecting the presence of covers rather than classifying the types of defects. However, manhole cover defects exhibit small inter-class feature differences and large intra-class feature variations, which makes their recognition challenging. To improve the classification of manhole cover defect types, we propose a Progressive Dual-Branch Feature Fusion Network (PDBFFN). The baseline backbone network adopts a multi-stage hierarchical architecture design using Res-Net50 as the visual feature extractor, from which both local and global information is obtained. Additionally, a Feature Enhancement Module (FEM) and a Fusion Module (FM) are introduced to enhance the network’s ability to learn critical features. Experimental results demonstrate that our model achieves a classification accuracy of 82.6% on a manhole cover defect dataset, outperforming several state-of-the-art fine-grained image classification models.
文摘A frame is an orthonormal basis-like collection of vectors in a Hilbert space, but need not be a basis or orthonormal. A fusion frame (frame of subspaces) is a frame-like collection of subspaces in a Hilbert space, thereby constructing a frame for the whole space by joining sequences of frames for subspaces. Moreover the notion of fusion frames provide a framework for applications and providing efficient and robust information processing algorithms.In this paper we study the conditions under which removing an element from a fusion frame, again we obtain another fusion frame. We give another proof of [5, Corollary 3.3(iii)] with extra information about the bounds.
文摘This work concerns the field of diagnostic aids that facilitate diagnostic decisions for practitioners, especially in medical imaging. The pathology in question, in this study, is the renal cyst. The diagnostic process starts from simultaneous acquisitions of double isotope (Teechnetium-99 m and Iodine-131) scintigraphic images. Then, the platform allows the fusion of these images and the calculation of a pathological parameter that permits the characterization of the state of the dysplasic kidney by comparing it with the normal one. The final result is fusion images annotated by the pathological parameter value.
文摘Because previous methods can not identify underlying image features from noises effectively, the updated image fusion schemes will be degraded when inputs are corrupted with noise. The perceptual salient image features often manifest some geometric structures, while noise dominated images are less structured. Based on complex wavelet transform, a structurization information metric is formulated by means of the Von Neumann entropy. The formulated metric can distinguish image features from noise very well. During the fusion process, the metric is employed to weight all fusion inputs. As a result, the perceptual meaningful inputs are enhanced while the noise inputs are de-emphasized adaptively. Comparing several image fusion schemes subjectively and objectively shows the good performance of the new scheme.
文摘真实场景点云不仅具有点云的空间几何信息,还具有三维物体的颜色信息,现有的网络无法有效利用真实场景的局部特征以及空间几何特征信息,因此提出了一种双通道特征融合的真实场景点云语义分割方法DCFNet(dual-channel feature fusion of real scene for point cloud semantic segmentation)可用于不同场景下的室内外场景语义分割。更具体地说,为了解决不能充分提取真实场景点云颜色信息的问题,该方法采用上下两个输入通道,通道均采用相同的特征提取网络结构,其中上通道的输入是完整RGB颜色和点云坐标信息,该通道主要关注于复杂物体对象场景特征,下通道仅输入点云坐标信息,该通道主要关注于点云的空间几何特征;在每个通道中为了更好地提取局部与全局信息,改善网络性能,引入了层间融合模块和Transformer通道特征扩充模块;同时,针对现有的三维点云语义分割方法缺乏关注局部特征与全局特征的联系,导致对复杂场景的分割效果不佳的问题,对上下两个通道所提取的特征通过DCFFS(dual-channel feature fusion segmentation)模块进行融合,并对真实场景进行语义分割。对室内复杂场景和大规模室内外场景点云分割基准进行了实验,实验结果表明,提出的DCFNet分割方法在S3DIS Area5室内场景数据集以及STPLS3D室外场景数据集上,平均交并比(MIOU)分别达到71.18%和48.87%,平均准确率(MACC)和整体准确率(OACC)分别达到77.01%与86.91%,实现了真实场景的高精度点云语义分割。
基金Sponsored by the National Natural Science Foundation of China(Grant No.61973153)
文摘On-orbit servicing, such as spacecraft maintenance, on-orbit assembly, refueling, and de-orbiting, can reduce the cost of space missions, improve the performance of spacecraft, and extend its life span. The relative state between the servicing and target spacecraft is vital for on-orbit servicing missions, especially the final approaching stage. The major challenge of this stage is that the observed features of the target are incomplete or are constantly changing due to the short distance and limited Field of View (FOV) of camera. Different from cooperative spacecraft, non-cooperative target does not have artificial feature markers. Therefore, contour features, including triangle supports of solar array, docking ring, and corner points of the spacecraft body, are used as the measuring features. To overcome the drawback of FOV limitation and imaging ambiguity of the camera, a "selfie stick" structure and a self-calibration strategy were implemented, ensuring that part of the contour features could be observed precisely when the two spacecraft approached each other. The observed features were constantly changing as the relative distance shortened. It was difficult to build a unified measurement model for different types of features, including points, line segments, and circle. Therefore, dual quaternion was implemented to model the relative dynamics and measuring features. With the consideration of state uncertainty of the target, a fuzzy adaptive strong tracking filter( FASTF) combining fuzzy logic adaptive controller (FLAC) with strong tracking filter(STF) was designed to robustly estimate the relative states between the servicing spacecraft and the target. Finally, the effectiveness of the strategy was verified by mathematical simulation. The achievement of this research provides a theoretical and technical foundation for future on-orbit servicing missions.