期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Study of the Combustion Process inside an Ethanol-Diesel Dual Direct Injection Engine Based on a Non-Uniform Injection Approach
1
作者 Liying Zhou Yu Liang 《Fluid Dynamics & Materials Processing》 EI 2021年第1期159-170,共12页
The use of ethanol is a promising method to reduce the emissions of diesel engines.The present study has been based on the installation of a gasoline electronic injection system in a single-cylinder diesel engine to c... The use of ethanol is a promising method to reduce the emissions of diesel engines.The present study has been based on the installation of a gasoline electronic injection system in a single-cylinder diesel engine to control the amount of ethanol entering the cylinder during the compression(while diesel has been injected into the cylinder by the original pump injection system).The injection time has been controlled by crank angle signal collected by an AVL angle indicator.In the tests ethanol and diesel each accounted for half of the fuel volume,and the total heat energy supply of the fuel was equivalent to that of the diesel under the operating conditions of the original engine.A three-dimensional combustion model of the diesel engine has been implemented by using the CFD software FIRE.Simulations have been carried out assuming uniform and non-uniform injections rate for the different holes and the different results have been compared.According to these results,a non-uniform injection rate can produce early ignition and cause an increase in the maximum in-cylinder pressure and the maximum average incylinder temperature.Moreover,in such conditions NO emissions are larger while soot emission is slightly lower. 展开更多
关键词 Combustion process dual direct injection DIESEL ETHANOL injection rate
下载PDF
Boundary layer flow over a moving surface in a nanofluid with suction or injection
2
作者 Norfifah Bachok Anuar Ishak Ioan Pop 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第1期34-40,共7页
An analysis is performed to study the heat transfer characteristics of steady two-dimensional boundary layer flow past a moving permeable flat plate in a nanofluid. The effects of uniform suction and injection on the ... An analysis is performed to study the heat transfer characteristics of steady two-dimensional boundary layer flow past a moving permeable flat plate in a nanofluid. The effects of uniform suction and injection on the flow field and heat transfer characteristics are numerically studied by using an implicit finite difference method. It is found that dual solutions exist when the plate and the free stream move in the opposite directions. The results indicate that suction delays the boundary layer separation, while injection accelerates it. 展开更多
关键词 Nanofluid .Moving plate. Boundary layer. Suction/injection - dual solutions
下载PDF
Experimental study of stratified lean burn characteristics on a dual injection gasoline engine 被引量:2
3
作者 Chun XIA Tingyu ZHAO +2 位作者 Junhua FANG Lei ZHU Zhen HUANG 《Frontiers in Energy》 SCIE CSCD 2022年第6期900-915,共16页
Due to increasingly stringent fuel consumption and emission regulation,improving thermal efficiency and reducing particulate matter emissions are two main issues for next generation gasoline engine.Lean burn mode coul... Due to increasingly stringent fuel consumption and emission regulation,improving thermal efficiency and reducing particulate matter emissions are two main issues for next generation gasoline engine.Lean burn mode could greatly reduce pumping loss and decrease the fuel consumption of gasoline engines,although the burning rate is decreased by higher diluted intake air.In this study,dual injection stratified combustion mode is used to accelerate the burning rate of lean burn by increasing the fuel concentration near the spark plug.The effects of engine control parameters such as the excess air coefficient(Lambda),direct injection(DI)ratio,spark interval with DI,and DI timing on combustion,fuel consumption,gaseous emissions,and particulate emissions of a dual injection gasoline engine are studied.It is shown that the lean burn limit can be extended to Lambda=1.8 with a low compression ratio of 10,while the fuel consumption can be obviously improved at Lambda=1.4.There exists a spark window for dual injection stratified lean burn mode,in which the spark timing has a weak effect on combustion.With optimization of the control parameters,the brake specific fuel consumption(BSFC)decreases 9.05%more than that of original stoichiometric combustion with DI as 2 bar brake mean effective pressure(BMEP)at a 2000 r/min engine speed.The NO_(x) emissions before threeway catalyst(TWC)are 71.31%lower than that of the original engine while the particle number(PN)is 81.45%lower than the original engine.The dual injection stratified lean burn has a wide range of applications which can effectively reduce fuel consumption and particulate emissions.The BSFC reduction rate is higher than 5%and the PN reduction rate is more than 50%with the speed lower than 2400 r/min and the load lower than 5 bar. 展开更多
关键词 dual injection stratified lean burn gasoline engine particulate matter emission combustion analysis
原文传递
Design and analysis of a novel dual source vapor injection heat pump using exhaust and ambient air
4
作者 Jing Li Yi Fan +5 位作者 Xudong Zhao Xiaoman Bai Jinzhi Zhou Ali Badiei Steve Myers Xiaoli Ma 《Energy and Built Environment》 2022年第1期95-104,共10页
A novel dual source vapor injection heat pump(DSVIHP)using exhaust and ambient air is proposed.The air exhausted from the building first releases energy to the medium-pressure evaporator and is then mixed with the amb... A novel dual source vapor injection heat pump(DSVIHP)using exhaust and ambient air is proposed.The air exhausted from the building first releases energy to the medium-pressure evaporator and is then mixed with the ambient air to heat the low-pressure evaporator.A vapor injection(VI)compressor of two inlets is connected with the low and medium pressure evaporators.It’s first time that a VI compressor is employed to recover the ventilation heat.The system can minimize the ventilation heat loss and provide a unique defrosting approach by using the exhaust waste heat.Fundamentals of the proposed DSVIHP are illustrated.Mathematical models are built.Both energetic and exergetic analyses are carried out under variable conditions.The results indicate that the DSVIHP has superior thermodynamic performance.The superiority is more appreciable at a lower ambient temperature.It has a higher COP than the conventional vapor injection heat pump and air source heat pump by 11.3%and 23.2%respectively at an ambient temperature of-10°C and condensation temperature of 45°C.The waste heat recovery ratio from the exhaust air is more than 100%.The novel DSVIHP has great potential in the cold climate area application. 展开更多
关键词 dual source vapor injection heat pump Exhaust air Waste heat recovery COP DEFROSTING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部