The use of ethanol is a promising method to reduce the emissions of diesel engines.The present study has been based on the installation of a gasoline electronic injection system in a single-cylinder diesel engine to c...The use of ethanol is a promising method to reduce the emissions of diesel engines.The present study has been based on the installation of a gasoline electronic injection system in a single-cylinder diesel engine to control the amount of ethanol entering the cylinder during the compression(while diesel has been injected into the cylinder by the original pump injection system).The injection time has been controlled by crank angle signal collected by an AVL angle indicator.In the tests ethanol and diesel each accounted for half of the fuel volume,and the total heat energy supply of the fuel was equivalent to that of the diesel under the operating conditions of the original engine.A three-dimensional combustion model of the diesel engine has been implemented by using the CFD software FIRE.Simulations have been carried out assuming uniform and non-uniform injections rate for the different holes and the different results have been compared.According to these results,a non-uniform injection rate can produce early ignition and cause an increase in the maximum in-cylinder pressure and the maximum average incylinder temperature.Moreover,in such conditions NO emissions are larger while soot emission is slightly lower.展开更多
An analysis is performed to study the heat transfer characteristics of steady two-dimensional boundary layer flow past a moving permeable flat plate in a nanofluid. The effects of uniform suction and injection on the ...An analysis is performed to study the heat transfer characteristics of steady two-dimensional boundary layer flow past a moving permeable flat plate in a nanofluid. The effects of uniform suction and injection on the flow field and heat transfer characteristics are numerically studied by using an implicit finite difference method. It is found that dual solutions exist when the plate and the free stream move in the opposite directions. The results indicate that suction delays the boundary layer separation, while injection accelerates it.展开更多
Due to increasingly stringent fuel consumption and emission regulation,improving thermal efficiency and reducing particulate matter emissions are two main issues for next generation gasoline engine.Lean burn mode coul...Due to increasingly stringent fuel consumption and emission regulation,improving thermal efficiency and reducing particulate matter emissions are two main issues for next generation gasoline engine.Lean burn mode could greatly reduce pumping loss and decrease the fuel consumption of gasoline engines,although the burning rate is decreased by higher diluted intake air.In this study,dual injection stratified combustion mode is used to accelerate the burning rate of lean burn by increasing the fuel concentration near the spark plug.The effects of engine control parameters such as the excess air coefficient(Lambda),direct injection(DI)ratio,spark interval with DI,and DI timing on combustion,fuel consumption,gaseous emissions,and particulate emissions of a dual injection gasoline engine are studied.It is shown that the lean burn limit can be extended to Lambda=1.8 with a low compression ratio of 10,while the fuel consumption can be obviously improved at Lambda=1.4.There exists a spark window for dual injection stratified lean burn mode,in which the spark timing has a weak effect on combustion.With optimization of the control parameters,the brake specific fuel consumption(BSFC)decreases 9.05%more than that of original stoichiometric combustion with DI as 2 bar brake mean effective pressure(BMEP)at a 2000 r/min engine speed.The NO_(x) emissions before threeway catalyst(TWC)are 71.31%lower than that of the original engine while the particle number(PN)is 81.45%lower than the original engine.The dual injection stratified lean burn has a wide range of applications which can effectively reduce fuel consumption and particulate emissions.The BSFC reduction rate is higher than 5%and the PN reduction rate is more than 50%with the speed lower than 2400 r/min and the load lower than 5 bar.展开更多
A novel dual source vapor injection heat pump(DSVIHP)using exhaust and ambient air is proposed.The air exhausted from the building first releases energy to the medium-pressure evaporator and is then mixed with the amb...A novel dual source vapor injection heat pump(DSVIHP)using exhaust and ambient air is proposed.The air exhausted from the building first releases energy to the medium-pressure evaporator and is then mixed with the ambient air to heat the low-pressure evaporator.A vapor injection(VI)compressor of two inlets is connected with the low and medium pressure evaporators.It’s first time that a VI compressor is employed to recover the ventilation heat.The system can minimize the ventilation heat loss and provide a unique defrosting approach by using the exhaust waste heat.Fundamentals of the proposed DSVIHP are illustrated.Mathematical models are built.Both energetic and exergetic analyses are carried out under variable conditions.The results indicate that the DSVIHP has superior thermodynamic performance.The superiority is more appreciable at a lower ambient temperature.It has a higher COP than the conventional vapor injection heat pump and air source heat pump by 11.3%and 23.2%respectively at an ambient temperature of-10°C and condensation temperature of 45°C.The waste heat recovery ratio from the exhaust air is more than 100%.The novel DSVIHP has great potential in the cold climate area application.展开更多
基金the National Natural Science Foundation of China(Nos.51476072 and 51366002)the Science and Technology Foundation of Guizhou Province(No.[2018]1006)+1 种基金Supporting Program for Top Scientific and Technological Talents in Universities of Guizhou Province(No.[2018]062)High-level Talent Research Funding Project of Guizhou Institute of Technology and Key Construction Projects of the First Class University(Phase I)of Guizhou Province in 2017-the First Class Course(Nos.2017158418 and 2017158435).
文摘The use of ethanol is a promising method to reduce the emissions of diesel engines.The present study has been based on the installation of a gasoline electronic injection system in a single-cylinder diesel engine to control the amount of ethanol entering the cylinder during the compression(while diesel has been injected into the cylinder by the original pump injection system).The injection time has been controlled by crank angle signal collected by an AVL angle indicator.In the tests ethanol and diesel each accounted for half of the fuel volume,and the total heat energy supply of the fuel was equivalent to that of the diesel under the operating conditions of the original engine.A three-dimensional combustion model of the diesel engine has been implemented by using the CFD software FIRE.Simulations have been carried out assuming uniform and non-uniform injections rate for the different holes and the different results have been compared.According to these results,a non-uniform injection rate can produce early ignition and cause an increase in the maximum in-cylinder pressure and the maximum average incylinder temperature.Moreover,in such conditions NO emissions are larger while soot emission is slightly lower.
基金supported by a research grant from the Universiti Kebangsaan Malaysia (Project Code: UKM-GGPM-NBT-080-2010)
文摘An analysis is performed to study the heat transfer characteristics of steady two-dimensional boundary layer flow past a moving permeable flat plate in a nanofluid. The effects of uniform suction and injection on the flow field and heat transfer characteristics are numerically studied by using an implicit finite difference method. It is found that dual solutions exist when the plate and the free stream move in the opposite directions. The results indicate that suction delays the boundary layer separation, while injection accelerates it.
基金supported by Shanghai Automotive Industry Technology Development Foundation and the National Natural Science Foundation of China(Grant No.51861135303).
文摘Due to increasingly stringent fuel consumption and emission regulation,improving thermal efficiency and reducing particulate matter emissions are two main issues for next generation gasoline engine.Lean burn mode could greatly reduce pumping loss and decrease the fuel consumption of gasoline engines,although the burning rate is decreased by higher diluted intake air.In this study,dual injection stratified combustion mode is used to accelerate the burning rate of lean burn by increasing the fuel concentration near the spark plug.The effects of engine control parameters such as the excess air coefficient(Lambda),direct injection(DI)ratio,spark interval with DI,and DI timing on combustion,fuel consumption,gaseous emissions,and particulate emissions of a dual injection gasoline engine are studied.It is shown that the lean burn limit can be extended to Lambda=1.8 with a low compression ratio of 10,while the fuel consumption can be obviously improved at Lambda=1.4.There exists a spark window for dual injection stratified lean burn mode,in which the spark timing has a weak effect on combustion.With optimization of the control parameters,the brake specific fuel consumption(BSFC)decreases 9.05%more than that of original stoichiometric combustion with DI as 2 bar brake mean effective pressure(BMEP)at a 2000 r/min engine speed.The NO_(x) emissions before threeway catalyst(TWC)are 71.31%lower than that of the original engine while the particle number(PN)is 81.45%lower than the original engine.The dual injection stratified lean burn has a wide range of applications which can effectively reduce fuel consumption and particulate emissions.The BSFC reduction rate is higher than 5%and the PN reduction rate is more than 50%with the speed lower than 2400 r/min and the load lower than 5 bar.
基金This work is funded by the UK BEIS project‘A low carbon heating system for existing public buildings employing a highly innovative multiple-throughout-flowing micro-channel solar-panel-array and a novel mixed indoor/outdoor air source heat pump’(LCHTIF1010).
文摘A novel dual source vapor injection heat pump(DSVIHP)using exhaust and ambient air is proposed.The air exhausted from the building first releases energy to the medium-pressure evaporator and is then mixed with the ambient air to heat the low-pressure evaporator.A vapor injection(VI)compressor of two inlets is connected with the low and medium pressure evaporators.It’s first time that a VI compressor is employed to recover the ventilation heat.The system can minimize the ventilation heat loss and provide a unique defrosting approach by using the exhaust waste heat.Fundamentals of the proposed DSVIHP are illustrated.Mathematical models are built.Both energetic and exergetic analyses are carried out under variable conditions.The results indicate that the DSVIHP has superior thermodynamic performance.The superiority is more appreciable at a lower ambient temperature.It has a higher COP than the conventional vapor injection heat pump and air source heat pump by 11.3%and 23.2%respectively at an ambient temperature of-10°C and condensation temperature of 45°C.The waste heat recovery ratio from the exhaust air is more than 100%.The novel DSVIHP has great potential in the cold climate area application.