A dual double interlocked storage cell(DICE)interleaving layout static random-access memory(SRAM)is designed and manufactured based on 65 nm bulk complementary metal oxide semiconductor technology.The single event ups...A dual double interlocked storage cell(DICE)interleaving layout static random-access memory(SRAM)is designed and manufactured based on 65 nm bulk complementary metal oxide semiconductor technology.The single event upset(SEU)cross sections of this memory are obtained via heavy ion irradiation with a linear energy transfer(LET)value ranging from 1.7 to 83.4 MeV/(mg/cm^(2)).Experimental results show that the upset threshold(LETth)of a 4 KB block is approximately 6 MeV/(mg/cm^(2)),which is much better than that of a standard unhardened SRAM with an identical technology node.A 1 KB block has a higher LETth of 25 MeV/(mg/cm^(2))owing to the use of the error detection and correction(EDAC)code.For a Ta ion irradiation test with the highest LET value(83.4 MeV/(mg/cm^(2))),the benefit of the EDAC code is reduced significantly because the multi-bit upset proportion in the SEU is increased remarkably.Compared with normal incident ions,the memory exhibits a higher SEU sensitivity in the tilt angle irradiation test.Moreover,the SEU cross section indicates a significant dependence on the data pattern.When comprehensively considering HSPICE simulation results and the sensitive area distributions of the DICE cell,it is shown that the data pattern dependence is primarily associated with the arrangement of sensitive transistor pairs in the layout.Finally,some suggestions are provided to further improve the radiation resistance of the memory.By implementing a particular design at the layout level,the SEU tolerance of the memory is improved significantly at a low area cost.Therefore,the designed 65 nm SRAM is suitable for electronic systems operating in serious radiation environments.展开更多
Experimental evidence is presented showing obvious azimuthal dependence of single event upsets(SEU) and multiple-bit upset(MBU) patterns in radiation hardened by design(RHBD) and MBU-sensitive static random access mem...Experimental evidence is presented showing obvious azimuthal dependence of single event upsets(SEU) and multiple-bit upset(MBU) patterns in radiation hardened by design(RHBD) and MBU-sensitive static random access memories(SRAMs), due to the anisotropic device layouts. Depending on the test devices, a discrepancy from 24.5% to 50% in the SEU cross sections of dual interlock cell(DICE) SRAMs is shown between two perpendicular ion azimuths under the same tilt angle. Significant angular dependence of the SEU data in this kind of design is also observed, which does not fit the inverse-cosine law in the effective LET method. Ion trajectory-oriented MBU patterns are identified, which is also affected by the topological distribution of sensitive volumes. Due to that the sensitive volumes are periodically isolated by the BL/BLB contacts along the Y-axis direction, double-bit upsets along the X-axis become the predominant configuration under normal incidence.Predominant triple-bit upset and quadruple-bit upset patterns are the same under different ion azimuths(Lshaped and square-shaped configurations, respectively). Those results suggest that traditional RPP/IRPP model should be promoted to consider the azimuthal and angular dependence of single event effects in certain designs.During earth-based evaluation of SEE sensitivity, worst case beam direction, i.e., the worst case response, should be revealed to avoid underestimation of the on-orbit error rate.展开更多
基金the National Natural Science Foundation of China(Nos.12035019,11690041,and 11805244).
文摘A dual double interlocked storage cell(DICE)interleaving layout static random-access memory(SRAM)is designed and manufactured based on 65 nm bulk complementary metal oxide semiconductor technology.The single event upset(SEU)cross sections of this memory are obtained via heavy ion irradiation with a linear energy transfer(LET)value ranging from 1.7 to 83.4 MeV/(mg/cm^(2)).Experimental results show that the upset threshold(LETth)of a 4 KB block is approximately 6 MeV/(mg/cm^(2)),which is much better than that of a standard unhardened SRAM with an identical technology node.A 1 KB block has a higher LETth of 25 MeV/(mg/cm^(2))owing to the use of the error detection and correction(EDAC)code.For a Ta ion irradiation test with the highest LET value(83.4 MeV/(mg/cm^(2))),the benefit of the EDAC code is reduced significantly because the multi-bit upset proportion in the SEU is increased remarkably.Compared with normal incident ions,the memory exhibits a higher SEU sensitivity in the tilt angle irradiation test.Moreover,the SEU cross section indicates a significant dependence on the data pattern.When comprehensively considering HSPICE simulation results and the sensitive area distributions of the DICE cell,it is shown that the data pattern dependence is primarily associated with the arrangement of sensitive transistor pairs in the layout.Finally,some suggestions are provided to further improve the radiation resistance of the memory.By implementing a particular design at the layout level,the SEU tolerance of the memory is improved significantly at a low area cost.Therefore,the designed 65 nm SRAM is suitable for electronic systems operating in serious radiation environments.
基金Supported by National Natural Science Foundation of China(Nos.11179003,10975164,61204112 and 61204116)China Postdoctoral Science Foundation(No.2014M552170)
文摘Experimental evidence is presented showing obvious azimuthal dependence of single event upsets(SEU) and multiple-bit upset(MBU) patterns in radiation hardened by design(RHBD) and MBU-sensitive static random access memories(SRAMs), due to the anisotropic device layouts. Depending on the test devices, a discrepancy from 24.5% to 50% in the SEU cross sections of dual interlock cell(DICE) SRAMs is shown between two perpendicular ion azimuths under the same tilt angle. Significant angular dependence of the SEU data in this kind of design is also observed, which does not fit the inverse-cosine law in the effective LET method. Ion trajectory-oriented MBU patterns are identified, which is also affected by the topological distribution of sensitive volumes. Due to that the sensitive volumes are periodically isolated by the BL/BLB contacts along the Y-axis direction, double-bit upsets along the X-axis become the predominant configuration under normal incidence.Predominant triple-bit upset and quadruple-bit upset patterns are the same under different ion azimuths(Lshaped and square-shaped configurations, respectively). Those results suggest that traditional RPP/IRPP model should be promoted to consider the azimuthal and angular dependence of single event effects in certain designs.During earth-based evaluation of SEE sensitivity, worst case beam direction, i.e., the worst case response, should be revealed to avoid underestimation of the on-orbit error rate.