To promote high-speed boundary layer transition,this paper proposes an active self-sustaining dual jets(SDJ)actuator utilizing the energy of supersonic mainflow.Employing the nanoparticle-based planar laser scattering...To promote high-speed boundary layer transition,this paper proposes an active self-sustaining dual jets(SDJ)actuator utilizing the energy of supersonic mainflow.Employing the nanoparticle-based planar laser scattering(NPLS),supersonic flat-plate boundary layer transition induced by SDJ is experimentally investigated in an Ma-2.95 low-turbulence wind tunnel.Streamwise and spanwise NPLS images are obtained to analyze fine flow structures of the whole transition process.The results reveal the transition control mechanisms that on the one hand,the jet-induced shear layer produces unstable Kelvin–Helmholtz instabilities in the wake flow,on the other hand,the jets also generates an adverse pressure gradient in the boundary layer and induce unstable streak structures,which gradually break down into turbulence downstream.The paper provides a new method for transition control of high-speed boundary layer,and have prospect both in theory and engineering application.展开更多
In the present paper, the flow field of dual rectangular jets was numerically simulated by solving the full Reynolds averaged Navier Stokes equations , where the RNG k ε model and the finite volume method were ...In the present paper, the flow field of dual rectangular jets was numerically simulated by solving the full Reynolds averaged Navier Stokes equations , where the RNG k ε model and the finite volume method were used. The flow structure in dual rectangular jets and the effects of the velocity were investigated. The numerical results agree qualitatively with the experimental data.展开更多
Due to the difference in density between the discharge effluent and coastal water,partially treated wastewater is often discharged into the marine environment as a buoyant jet via submarine outfalls with multiport dif...Due to the difference in density between the discharge effluent and coastal water,partially treated wastewater is often discharged into the marine environment as a buoyant jet via submarine outfalls with multiport diffusers.The dilution characteristics of effluent discharge(dual buoyant jets)in a wavy cross-flow environment were studied in a laboratory.The planar laser-induced fluorescence technique was used to obtain the concentration data of the jets.The effects of different environmental variables on the diffusion and dilution characteristics of the jets were examined through physical experiments,dimensional analysis,and empirical formulations.It was found that the dilution process of the dual jets could be divided into two components:the original jet component and the effluent cloud component.The jet-to-current velocity ratio was the main parameter affecting the concentration levels of the effluent cloud.The merging of the two jets increased the jet concentration in the flow field.When the jets traveled further downstream,the axial dilution increased gradually and then increased significantly along the axis.Under the effects of strong waves,the concentration contours branched into two peaks,and the mean dilution became more significant than under the effects of weak waves.Therefore,the dilution of the effluent discharge was expected to be significant under strong wave effects because the hydrodynamic force increased.A dilution equation was derived to improve our understanding of the dilution process of buoyant jets in a wavy cross-flow environment.This equation was used to determine the influences of the jet-to-current velocity ratio,wave-to-current velocity ratio,and Strouhal number on the minimum jet dilution.It revealed that the wave and buoyancy effects in effluent discharges were significant.展开更多
A promising strategy of synthetic jet arrays (SJA) control for NACA0021 airfoil in preventing flow separation and delaying stall is investigated. Through aerodynamic forces, flowfield and velocity profiles measureme...A promising strategy of synthetic jet arrays (SJA) control for NACA0021 airfoil in preventing flow separation and delaying stall is investigated. Through aerodynamic forces, flowfield and velocity profiles measurements, it indicates that the synthetic jet (S J) could enlarge the mixing of the shear layer and then enhance the stability of boundary layer, resulting in scope reduction of the flow separation zone. Furthermore, the control effects of dual jet arrays positioned at 15%c (Actuator 1) and 40%c (Actuator 2) respectively are systematically investigated with different jet parameters, such as two typical relative phase angles and various incline angles of the jet. The jet closer to the leading edge of airfoil is more advantageous in delaying the stall of airfoil, and overall, the flow control performances of jet arrays are better than those of single actuator. At the angle of attack (AoA) just approaching and larger than the stall AoA, jet array with 180° phase difference could increase the lift coefficient more significantly and prevent flow separation. When momentum coefficient of the jet arrays is small, a larger jet angle of Actuator 2 is more effective in improving the maximum lift coefficient of airfoil. With a larger momentum coefficient of jet array, a smaller jet angle of Actuator 2 is more effective.展开更多
The autonomous and controllable Dual Synthetic Jet Actuator(DSJA)is firstly integrated into the Unmanned Aerial Vehicle(UAV),and flight tests without the deflection of rudders are carried out to verify the viability o...The autonomous and controllable Dual Synthetic Jet Actuator(DSJA)is firstly integrated into the Unmanned Aerial Vehicle(UAV),and flight tests without the deflection of rudders are carried out to verify the viability of DSJA to control the attitudes of UAV during cruising.DSJA is improved into an actuator with two diaphragms and three cavities,which has higher energy levels.Actuators,differentially distributed on both sides of the wings,are installed on the trailing edge close to the wing tips.Flight tests,containing Differential Circulation Control(DCC)using double-side actuators,Positive Circulation Control(PCC)using left-side actuators and Negative Circulation Control(NCC)using right-side actuators,are implemented at cruising speed of 25 m/s.Results show that roll attitude control without rudders could be realized by DSJAs.DCC and NCC can generate the rightward roll and yaw angular velocity,prompting UAV to turn right.The stronger controlling ability can be achieved by DCC,with the maximum roll angular velocity of 15.62(°)/s.PCC can generate a rightward roll moment,but a leftward yaw moment will be produced at the same time.Leftward yaw induces the leftward rolling moment,which weakens the roll control effect,making UAV keep to yaw to the left with a small slope.展开更多
Shock wave/boundary layer interaction(SWBLI)is still one of the unresolved bottlenecks that restrict the development of more advanced flight vehicles.Supersonic forward-facing step(FFS),an extreme case of compression ...Shock wave/boundary layer interaction(SWBLI)is still one of the unresolved bottlenecks that restrict the development of more advanced flight vehicles.Supersonic forward-facing step(FFS),an extreme case of compression ramp,often occurs severe SWBLIs with a large separation bubble.In this paper,experimental investigations on vortical structures and density fluctuations characteristics of supersonic FFS controlled by self-sustaining dual synthetic jets(SDSJ)are carried out in a Mach number 2.95 wind tunnel.High spatial–temporal resolution flowfield images of FFS without/with active flow control are captured by adopting nano-particle-based planar laser scattering technique.The control effects of the distance between the actuator and the step are mainly compared.The paper finds that the SDSJ can effectively change the feature of flowfield,eliminate the separation shock and the reattachment shock,compel the original shock induced by the step leading edge to distort and reduce its intensity finally.Density fluctuations analysis demonstrates that the whole flows seem to move upstream with the increase of distance(dS-J).Discrete Fourier transformation spectrums results reveal that the fluctuations are mainly located in the low-frequency region at first.High-frequency components and frequency bandwidth increase slightly after the SDSJ are applied.展开更多
For achieving the nice stealth performance and aerodynamic maneuverability of a Flying Wing Aircraft(FWA),a novel yaw effector based on Reverse Dual Synthetic Jets(RDSJ)was proposed without the movement of rudders.Eff...For achieving the nice stealth performance and aerodynamic maneuverability of a Flying Wing Aircraft(FWA),a novel yaw effector based on Reverse Dual Synthetic Jets(RDSJ)was proposed without the movement of rudders.Effects on aerodynamic characteristics of a small-sweep FWA and control mechanism were investigated by numerical simulations.Finally,reverse dual synthetic jet actuators were integrated into a real FWA and flight tests were firstly carried out.Numerical results show that RDSJ could make drag coefficient increase and weaken lift coefficient,which generate a yawing moment and a rolling moment in the same direction,realizing control of heading attitudes,but strong coupling with the pitching moment occurs at large angles of attack.For control mechanism,RDSJ could produce two reverse synthetic jets out of phases,improve the reverse pressure gradient and hence form alternate recirculation zones or even early large-area separation,which cause the rise of pressures before exits and the dip of pressures behind exits,achieving improvement of drag and the yawing moment.The results of flight tests support that RDSJ could realize control of heading attitudes without deflections of rudders during the cruise stage and achieve the maximal yaw angular velocity of 10.12(°)/s,verifying the feasibility of this novel yaw effector.展开更多
The excellent vectoring characteristic of Dual Synthetic Jet(DSJ)provides a new control strategy for the active flow control,such as thrust vectoring control,large area cooling,separated flow control and so on.For inc...The excellent vectoring characteristic of Dual Synthetic Jet(DSJ)provides a new control strategy for the active flow control,such as thrust vectoring control,large area cooling,separated flow control and so on.For incompressible flow,the influence relation of source variables,such as structure parameters of actuators,driving parameters and material attributes of piezoelectric vibrating diaphragm,on the vectoring DSJ and a theoretical model are established based on theoretical and regression analysis,which are all verified by numerical simulations.The two synthetic jets can be deemed as a main flow with a higher jet velocity and a disturbing flow with a lower jet velocity.The results indicate that the influence factors contain the low-pressure area formed at the exit of the disturbing flow,which could promote the vectoring deflection,and the impact effect of the disturbing flow and the suppressive effect of the main flow with the effect of restraining the vectoring deflection.The vectoring angle is a complex parameter coupled by all source variables.The detailed theoretical model,whose error is controlled within 3.6 degrees,can be used to quantitatively assess the vectoring feature of DSJ and thus to provide a guidance for designing the control law applied in the active flow control.展开更多
The Dual Synthetic Jet Actuator(DSJA) is used to develop a new type of lift enhancement device based on circulation control, and to control the flow over the two-dimensional(2D)NACA0015 airfoil. The lift enhancement d...The Dual Synthetic Jet Actuator(DSJA) is used to develop a new type of lift enhancement device based on circulation control, and to control the flow over the two-dimensional(2D)NACA0015 airfoil. The lift enhancement device is composed of a DSJA and a rounded trailing edge(Coanda surface). The two outlets of the DSJA eject two jets(Jet 1 and Jet 2). Jet 1 ejects from the upper trailing edge, which increases the circulation of airfoil with the help of the Coanda surface. Jet2 ejects from the lower trailing edge, which acts as a virtual flap. The Reynolds number based on the airfoil chord length and free flow velocity is 250000. The results indicate that the circulation control method based on Dual Synthetic Jet(DSJ) has good performance in lift enhancement, whose control effect is closely related to momentum coefficient and reduced frequency. With the increase of the reduced frequency, the control effect of the lift enhancement is slightly reduced. As the momentum coefficient increases, the control effect becomes better. When the angle of attack is greater than 4°, the increments of lift coefficients under the control of DSJ are larger than those under the control of the steady blowing at a same momentum coefficient. The maximum lift augmentation efficiency can reach 47 when the momentum coefficient is 0.02, which is higher than the value in the case with steady blowing jet circulation control.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11602299,11872374,and 51809271)
文摘To promote high-speed boundary layer transition,this paper proposes an active self-sustaining dual jets(SDJ)actuator utilizing the energy of supersonic mainflow.Employing the nanoparticle-based planar laser scattering(NPLS),supersonic flat-plate boundary layer transition induced by SDJ is experimentally investigated in an Ma-2.95 low-turbulence wind tunnel.Streamwise and spanwise NPLS images are obtained to analyze fine flow structures of the whole transition process.The results reveal the transition control mechanisms that on the one hand,the jet-induced shear layer produces unstable Kelvin–Helmholtz instabilities in the wake flow,on the other hand,the jets also generates an adverse pressure gradient in the boundary layer and induce unstable streak structures,which gradually break down into turbulence downstream.The paper provides a new method for transition control of high-speed boundary layer,and have prospect both in theory and engineering application.
文摘In the present paper, the flow field of dual rectangular jets was numerically simulated by solving the full Reynolds averaged Navier Stokes equations , where the RNG k ε model and the finite volume method were used. The flow structure in dual rectangular jets and the effects of the velocity were investigated. The numerical results agree qualitatively with the experimental data.
基金supported by the Fundamental Research Funds for the Central Universities of China(Grant No.B200202057)and the National Natural Science Foundation of China(Grant No.51979076)。
文摘Due to the difference in density between the discharge effluent and coastal water,partially treated wastewater is often discharged into the marine environment as a buoyant jet via submarine outfalls with multiport diffusers.The dilution characteristics of effluent discharge(dual buoyant jets)in a wavy cross-flow environment were studied in a laboratory.The planar laser-induced fluorescence technique was used to obtain the concentration data of the jets.The effects of different environmental variables on the diffusion and dilution characteristics of the jets were examined through physical experiments,dimensional analysis,and empirical formulations.It was found that the dilution process of the dual jets could be divided into two components:the original jet component and the effluent cloud component.The jet-to-current velocity ratio was the main parameter affecting the concentration levels of the effluent cloud.The merging of the two jets increased the jet concentration in the flow field.When the jets traveled further downstream,the axial dilution increased gradually and then increased significantly along the axis.Under the effects of strong waves,the concentration contours branched into two peaks,and the mean dilution became more significant than under the effects of weak waves.Therefore,the dilution of the effluent discharge was expected to be significant under strong wave effects because the hydrodynamic force increased.A dilution equation was derived to improve our understanding of the dilution process of buoyant jets in a wavy cross-flow environment.This equation was used to determine the influences of the jet-to-current velocity ratio,wave-to-current velocity ratio,and Strouhal number on the minimum jet dilution.It revealed that the wave and buoyancy effects in effluent discharges were significant.
基金support of the National Natural Science Foundation of China(No.11272150)
文摘A promising strategy of synthetic jet arrays (SJA) control for NACA0021 airfoil in preventing flow separation and delaying stall is investigated. Through aerodynamic forces, flowfield and velocity profiles measurements, it indicates that the synthetic jet (S J) could enlarge the mixing of the shear layer and then enhance the stability of boundary layer, resulting in scope reduction of the flow separation zone. Furthermore, the control effects of dual jet arrays positioned at 15%c (Actuator 1) and 40%c (Actuator 2) respectively are systematically investigated with different jet parameters, such as two typical relative phase angles and various incline angles of the jet. The jet closer to the leading edge of airfoil is more advantageous in delaying the stall of airfoil, and overall, the flow control performances of jet arrays are better than those of single actuator. At the angle of attack (AoA) just approaching and larger than the stall AoA, jet array with 180° phase difference could increase the lift coefficient more significantly and prevent flow separation. When momentum coefficient of the jet arrays is small, a larger jet angle of Actuator 2 is more effective in improving the maximum lift coefficient of airfoil. With a larger momentum coefficient of jet array, a smaller jet angle of Actuator 2 is more effective.
基金co-supported by the National Natural Science Foundation of China(Nos.11972369,11872374)the Youth Science and Technology Innovation Award Funded Project of National University of Defense Technology,China(No.434517314)。
文摘The autonomous and controllable Dual Synthetic Jet Actuator(DSJA)is firstly integrated into the Unmanned Aerial Vehicle(UAV),and flight tests without the deflection of rudders are carried out to verify the viability of DSJA to control the attitudes of UAV during cruising.DSJA is improved into an actuator with two diaphragms and three cavities,which has higher energy levels.Actuators,differentially distributed on both sides of the wings,are installed on the trailing edge close to the wing tips.Flight tests,containing Differential Circulation Control(DCC)using double-side actuators,Positive Circulation Control(PCC)using left-side actuators and Negative Circulation Control(NCC)using right-side actuators,are implemented at cruising speed of 25 m/s.Results show that roll attitude control without rudders could be realized by DSJAs.DCC and NCC can generate the rightward roll and yaw angular velocity,prompting UAV to turn right.The stronger controlling ability can be achieved by DCC,with the maximum roll angular velocity of 15.62(°)/s.PCC can generate a rightward roll moment,but a leftward yaw moment will be produced at the same time.Leftward yaw induces the leftward rolling moment,which weakens the roll control effect,making UAV keep to yaw to the left with a small slope.
基金The present research was supported by the National Natural Science Foundation of China(Grants 11972369,51809271,11872374 and 11602299).
文摘Shock wave/boundary layer interaction(SWBLI)is still one of the unresolved bottlenecks that restrict the development of more advanced flight vehicles.Supersonic forward-facing step(FFS),an extreme case of compression ramp,often occurs severe SWBLIs with a large separation bubble.In this paper,experimental investigations on vortical structures and density fluctuations characteristics of supersonic FFS controlled by self-sustaining dual synthetic jets(SDSJ)are carried out in a Mach number 2.95 wind tunnel.High spatial–temporal resolution flowfield images of FFS without/with active flow control are captured by adopting nano-particle-based planar laser scattering technique.The control effects of the distance between the actuator and the step are mainly compared.The paper finds that the SDSJ can effectively change the feature of flowfield,eliminate the separation shock and the reattachment shock,compel the original shock induced by the step leading edge to distort and reduce its intensity finally.Density fluctuations analysis demonstrates that the whole flows seem to move upstream with the increase of distance(dS-J).Discrete Fourier transformation spectrums results reveal that the fluctuations are mainly located in the low-frequency region at first.High-frequency components and frequency bandwidth increase slightly after the SDSJ are applied.
基金supported by the National Natural Science Foundation of China(Nos.U2141252,11972369 and 52075538)。
文摘For achieving the nice stealth performance and aerodynamic maneuverability of a Flying Wing Aircraft(FWA),a novel yaw effector based on Reverse Dual Synthetic Jets(RDSJ)was proposed without the movement of rudders.Effects on aerodynamic characteristics of a small-sweep FWA and control mechanism were investigated by numerical simulations.Finally,reverse dual synthetic jet actuators were integrated into a real FWA and flight tests were firstly carried out.Numerical results show that RDSJ could make drag coefficient increase and weaken lift coefficient,which generate a yawing moment and a rolling moment in the same direction,realizing control of heading attitudes,but strong coupling with the pitching moment occurs at large angles of attack.For control mechanism,RDSJ could produce two reverse synthetic jets out of phases,improve the reverse pressure gradient and hence form alternate recirculation zones or even early large-area separation,which cause the rise of pressures before exits and the dip of pressures behind exits,achieving improvement of drag and the yawing moment.The results of flight tests support that RDSJ could realize control of heading attitudes without deflections of rudders during the cruise stage and achieve the maximal yaw angular velocity of 10.12(°)/s,verifying the feasibility of this novel yaw effector.
基金supported by the National Natural Science Foundation of China(Nos.11972369 and 11872374)。
文摘The excellent vectoring characteristic of Dual Synthetic Jet(DSJ)provides a new control strategy for the active flow control,such as thrust vectoring control,large area cooling,separated flow control and so on.For incompressible flow,the influence relation of source variables,such as structure parameters of actuators,driving parameters and material attributes of piezoelectric vibrating diaphragm,on the vectoring DSJ and a theoretical model are established based on theoretical and regression analysis,which are all verified by numerical simulations.The two synthetic jets can be deemed as a main flow with a higher jet velocity and a disturbing flow with a lower jet velocity.The results indicate that the influence factors contain the low-pressure area formed at the exit of the disturbing flow,which could promote the vectoring deflection,and the impact effect of the disturbing flow and the suppressive effect of the main flow with the effect of restraining the vectoring deflection.The vectoring angle is a complex parameter coupled by all source variables.The detailed theoretical model,whose error is controlled within 3.6 degrees,can be used to quantitatively assess the vectoring feature of DSJ and thus to provide a guidance for designing the control law applied in the active flow control.
基金co-supported by the National Natural Science Foundation of China(Nos.11972369 and 11872374)the Youth Science and Technology Innovation Award funded project of National University of Defense Technology,China(434517314).
文摘The Dual Synthetic Jet Actuator(DSJA) is used to develop a new type of lift enhancement device based on circulation control, and to control the flow over the two-dimensional(2D)NACA0015 airfoil. The lift enhancement device is composed of a DSJA and a rounded trailing edge(Coanda surface). The two outlets of the DSJA eject two jets(Jet 1 and Jet 2). Jet 1 ejects from the upper trailing edge, which increases the circulation of airfoil with the help of the Coanda surface. Jet2 ejects from the lower trailing edge, which acts as a virtual flap. The Reynolds number based on the airfoil chord length and free flow velocity is 250000. The results indicate that the circulation control method based on Dual Synthetic Jet(DSJ) has good performance in lift enhancement, whose control effect is closely related to momentum coefficient and reduced frequency. With the increase of the reduced frequency, the control effect of the lift enhancement is slightly reduced. As the momentum coefficient increases, the control effect becomes better. When the angle of attack is greater than 4°, the increments of lift coefficients under the control of DSJ are larger than those under the control of the steady blowing at a same momentum coefficient. The maximum lift augmentation efficiency can reach 47 when the momentum coefficient is 0.02, which is higher than the value in the case with steady blowing jet circulation control.