Dual pn junctions in lateral and vertical directions are formed by diffusing the p^+ on the patterned n-well in standard CMOS technology, which are inserted under the inductor in order to reduce the currents in the s...Dual pn junctions in lateral and vertical directions are formed by diffusing the p^+ on the patterned n-well in standard CMOS technology, which are inserted under the inductor in order to reduce the currents in the substrate induced by the electromagnetic field from the inductor. The thickness of high resistance is not equivalent to the width of the depletion region of the vertical pn junctions,but the depth of the bottom pn junction in the substrate are both proposed and validated. For the first time, through the grounded p^+-diffusion layer shielding the suhstrate from the electric field of the inductor, the width of the depletion regions of the lateral and vertical pn junctions are changed by increasing the voltage applied to the n wells. The quality factor is improved or reduced with the thickness of high resistance by 19%. This phenomenon validates the theory that the pn junction substrate isolation can reduce the loss caused by the currents in the substrate induced by the electromagnetic field from the inductor.展开更多
Along with the introduction of the concept of dual-channel communication,we utilized the finite-difference time-domain(FDTD) method to simulate and measure the radiation pattern under certain plasma densities and pl...Along with the introduction of the concept of dual-channel communication,we utilized the finite-difference time-domain(FDTD) method to simulate and measure the radiation pattern under certain plasma densities and plasma collision frequencies.Results show that under certain settings,the radiation pattern of a plasma antenna resembles that of a metallic antenna.In contrast to a metallic antenna,a plasma antenna possesses other functionalities,such as dynamic reconfiguration and digital controllability.The data from simulation are similar to the measurement results,indicating that column plasma antenna can realize dual-channel communication.This work confirms the viability of realizing dual-channel communication by column plasma antenna,which adds a new but promising method for modern intelligent communication.展开更多
文摘Dual pn junctions in lateral and vertical directions are formed by diffusing the p^+ on the patterned n-well in standard CMOS technology, which are inserted under the inductor in order to reduce the currents in the substrate induced by the electromagnetic field from the inductor. The thickness of high resistance is not equivalent to the width of the depletion region of the vertical pn junctions,but the depth of the bottom pn junction in the substrate are both proposed and validated. For the first time, through the grounded p^+-diffusion layer shielding the suhstrate from the electric field of the inductor, the width of the depletion regions of the lateral and vertical pn junctions are changed by increasing the voltage applied to the n wells. The quality factor is improved or reduced with the thickness of high resistance by 19%. This phenomenon validates the theory that the pn junction substrate isolation can reduce the loss caused by the currents in the substrate induced by the electromagnetic field from the inductor.
文摘Along with the introduction of the concept of dual-channel communication,we utilized the finite-difference time-domain(FDTD) method to simulate and measure the radiation pattern under certain plasma densities and plasma collision frequencies.Results show that under certain settings,the radiation pattern of a plasma antenna resembles that of a metallic antenna.In contrast to a metallic antenna,a plasma antenna possesses other functionalities,such as dynamic reconfiguration and digital controllability.The data from simulation are similar to the measurement results,indicating that column plasma antenna can realize dual-channel communication.This work confirms the viability of realizing dual-channel communication by column plasma antenna,which adds a new but promising method for modern intelligent communication.