Dual phase heat treatment is an economical and effective way for improving the properties of low carbon steels and low-alloy steel materials. In this paper, the microstructures and mechanical properties of 20MnSi stee...Dual phase heat treatment is an economical and effective way for improving the properties of low carbon steels and low-alloy steel materials. In this paper, the microstructures and mechanical properties of 20MnSi steel treated by different dual phase heat treatment have been studied. The results show that dual phase heat treatment with pre-quenching technique and then heating from room temperature to the critical zone can achieve finer and more homogeneous microstructure than that with pre-normalizing technique and then cooling from austenite zone to the critical zone. Among all factors affecting dual phase heat treatment, quenching temperature at the critical zone and tempering temperature play an important part in mechanical properties. Using proper dual phase heat treatment technique with computer optimized parameters, the yield strength, the elongation and impact toughness of 20MnSi can reach 860 MPa, 16% and 207 MPa respectively.展开更多
To investigate the tribological potential of the dual phase (DP) steel as a wear resistant material, the wear and the friction characteristics of this steel, which consists of hard martensite islands embedded in a d...To investigate the tribological potential of the dual phase (DP) steel as a wear resistant material, the wear and the friction characteristics of this steel, which consists of hard martensite islands embedded in a ductile ferrite matrix, have been investigated and compared with those observed in plain carbon hardened (H) steel that has the same carbon content of 0.2%. Dry sliding wear tests have been carried out using a pin-on-disk wear testing machine at different normal loads of 21.3 N, 28. 5 N, 35.7 N, and 42.6 N and at a constant sliding velocity of 1.20 m/s. The analysis of surface and wear debris of samples showed that the wear mechanism was mainly mild oxidative. The friction and the wear rate of the H steel and the DP Steel have been explained with respect to the microstructure and the wear mechanism.展开更多
Low-carbon (0.08 wt% C) steel has been subjected to three different heat treatments to obtain dual-phase steels with different microstructures. An understanding of structure-property was established through tensile ...Low-carbon (0.08 wt% C) steel has been subjected to three different heat treatments to obtain dual-phase steels with different microstructures. An understanding of structure-property was established through tensile tests, in conjunction with scanning electron microscope and transmission electron microscope. The results show that the steel after intermediate quenching (IQ) consisting of fine and fibrous martensite exhibited the intermediate strength, highest elongation and the best comprehensive performance of mechanical properties, whereas the steel subjected to intercritical annealing (IA) produced a network martensite along ferrite grain boundaries, having the lowest strength and intermediate elongation. Besides, step quenching (SQ) resulted in a coarse and blocky ferrite-martensite microstructure showing the worst mechanical properties of the three different heat-treatment conditions. The strain-hardening behavior was studied through the modified Crussard- Jaoul model, indicating two stages of strain-hardening behavior for all three samples. The highest magnitude of strain- hardening ability was obtained by IQ annealing routes. The analysis of the fractured surface revealed that ferrite/martensite interfaces are the most susceptible for microvoid nucleation. However, martensite microcracks were also observed in SQ sample, and the microvoids are nucleated within the ferrite grain in IA sample as well. The variations in strength, elongation, strain-hardening behavior and fracture mechanism of the steel with different heat-treatment schedules were further discussed in relation to the microstructural features.展开更多
文摘Dual phase heat treatment is an economical and effective way for improving the properties of low carbon steels and low-alloy steel materials. In this paper, the microstructures and mechanical properties of 20MnSi steel treated by different dual phase heat treatment have been studied. The results show that dual phase heat treatment with pre-quenching technique and then heating from room temperature to the critical zone can achieve finer and more homogeneous microstructure than that with pre-normalizing technique and then cooling from austenite zone to the critical zone. Among all factors affecting dual phase heat treatment, quenching temperature at the critical zone and tempering temperature play an important part in mechanical properties. Using proper dual phase heat treatment technique with computer optimized parameters, the yield strength, the elongation and impact toughness of 20MnSi can reach 860 MPa, 16% and 207 MPa respectively.
文摘To investigate the tribological potential of the dual phase (DP) steel as a wear resistant material, the wear and the friction characteristics of this steel, which consists of hard martensite islands embedded in a ductile ferrite matrix, have been investigated and compared with those observed in plain carbon hardened (H) steel that has the same carbon content of 0.2%. Dry sliding wear tests have been carried out using a pin-on-disk wear testing machine at different normal loads of 21.3 N, 28. 5 N, 35.7 N, and 42.6 N and at a constant sliding velocity of 1.20 m/s. The analysis of surface and wear debris of samples showed that the wear mechanism was mainly mild oxidative. The friction and the wear rate of the H steel and the DP Steel have been explained with respect to the microstructure and the wear mechanism.
基金financially supported by the National Key Project of Scientific and Technical Supporting Programs of China (No. 2011CB606306-2)the National Natural Science Foundation of China (Grant No. 51204048)
文摘Low-carbon (0.08 wt% C) steel has been subjected to three different heat treatments to obtain dual-phase steels with different microstructures. An understanding of structure-property was established through tensile tests, in conjunction with scanning electron microscope and transmission electron microscope. The results show that the steel after intermediate quenching (IQ) consisting of fine and fibrous martensite exhibited the intermediate strength, highest elongation and the best comprehensive performance of mechanical properties, whereas the steel subjected to intercritical annealing (IA) produced a network martensite along ferrite grain boundaries, having the lowest strength and intermediate elongation. Besides, step quenching (SQ) resulted in a coarse and blocky ferrite-martensite microstructure showing the worst mechanical properties of the three different heat-treatment conditions. The strain-hardening behavior was studied through the modified Crussard- Jaoul model, indicating two stages of strain-hardening behavior for all three samples. The highest magnitude of strain- hardening ability was obtained by IQ annealing routes. The analysis of the fractured surface revealed that ferrite/martensite interfaces are the most susceptible for microvoid nucleation. However, martensite microcracks were also observed in SQ sample, and the microvoids are nucleated within the ferrite grain in IA sample as well. The variations in strength, elongation, strain-hardening behavior and fracture mechanism of the steel with different heat-treatment schedules were further discussed in relation to the microstructural features.