Fiber cladding surface plasmon resonance(SPR)sensors have few structures,and a clad SPR sensor based on S-type fiber is proposed in this paper.This new type of fiber cladding SPR sensor was formed by electrofusing an ...Fiber cladding surface plasmon resonance(SPR)sensors have few structures,and a clad SPR sensor based on S-type fiber is proposed in this paper.This new type of fiber cladding SPR sensor was formed by electrofusing an S-shaped structure on the fiber to couple the light in the fiber core to the cladding.In this paper,the effects of fiber parameters on the performance of the sensor were studied by simulation and experiment.Based on the conclusion that the smaller the core diameter is,the closer the working band of the SPR resonance is to long wavelengths,and that the geometric characteristics mean that a multimode fiber can receive the fiber cladding light from a small core diameter few-mode fiber,a dual channel SPR sensor with a double S-type fiber cascade was proposed.In the refractive index detection range of 1.333–1.385refractive index units(RIU),the resonant working band of channel I is 627.66 nm–759.78 nm,with an average sensitivity of 2540.77 nm/RIU,and the resonant working band of channel II is 518.24 nm–658.2 nm,with an average sensitivity of2691.54 nm/RIU.The processing method for the S-type fiber cladding SPR sensor is simple,effectively solving the problem of this type of SPR sensor structure and the difficult realization of a dual channel.The sensor is expected to be used in the fields of medical treatment and biological analysis.展开更多
In order to control the working wavelength range of the fiber surface plasmon resonance(SPR)temperature sensor and realize the wavelength division multiplexing type multi-channel fiber SPR temperature sensor,by compre...In order to control the working wavelength range of the fiber surface plasmon resonance(SPR)temperature sensor and realize the wavelength division multiplexing type multi-channel fiber SPR temperature sensor,by comprehensively investigating the influence of liquids with different thermal-optical coefficients and solid packaging materials on the performance of fiber SPR temperature sensor,a dual-channel fiber SPR temperature sensor based on liquid-solid cascade encapsulation was designed and fabricated.The liquid temperature sensing stage encapsulated in capillary worked in 616.03 nm-639.05 nm band,the solid sensing stage coated with pouring sealant worked in 719.37 nm-825.27 nm band,and the two stages were cascaded to form a fiber dual-channel temperature sensor.The testing results indicated that when the temperature range was 35℃-95℃,the sensitivity of two-stage temperature detection was−0.384 nm/℃and−1.765 nm/℃respectively.The proposed fiber sensor has simple fabrication and excellent performance which can be widely used in various fields of dual-channel temperature measurement and temperature compensation.展开更多
This work proposes to design a fuzzy proportional-integral derivative (FPID) controller for dual-sensor cardiac pacemaker systems, which can automatically control the heart rate to accurately track a desired preset pr...This work proposes to design a fuzzy proportional-integral derivative (FPID) controller for dual-sensor cardiac pacemaker systems, which can automatically control the heart rate to accurately track a desired preset profile. The combination of fuzzy logic and conventional PID control approaches is adopted for the controller design based on dual-sensors. This controller offers good adaptation of the heart rate to the physiological needs of the patient under different states (rest and walk). Through comparing with the conventional fuzzy control algorithm, FPID provides a more suitable control strategy to determine a pacing rate in order to achieve a closer match between actual heart rate and a desired profile. To assist the heartbeat recovery, the stimuli with adjustable pacing rate is generated by the pacemaker according to the FPID controller, such actual heart rate may track the preset heart rate faithfully. Simulation results confirm that this proposed control design is effective for heartbeat recovery and maintenance. This study will be helpful not only for the analysis and treatment of bradycardias but also for improving the performance of medical devices.展开更多
<div style="text-align:justify;"> An in-fiber axial micro-strain sensor based on a Few Mode Fiber Bragg Grating (FM-FBG) is proposed and experimentally characterized. This FM-FBG is in inscribed in a m...<div style="text-align:justify;"> An in-fiber axial micro-strain sensor based on a Few Mode Fiber Bragg Grating (FM-FBG) is proposed and experimentally characterized. This FM-FBG is in inscribed in a multi-layer few-mode fiber (ML-FMF), and could acquire the change of the axial strain along fibers, which depends on the transmission dips. On account of the distinct dual-mode property, a good stability of this sensor is realized. The two transmission dips could have the different sensing behaviors. Both the propagation characteristics and operation principle of such a sensor are demonstrated in detail. High sensitivity of the FM-FBG, ~4 pm/με and ~4.5 pm/με within the range of 0 με - 1456 με, is experimentally achieved. FM-FBGs could be easily scattered along one fiber. So this sensor may have a great potential of being used in sensor networks. </div>展开更多
Cardiovascular disease is defined as a heart rate that is less than 60 bpm. Implantable cardiac devices such as pacemakers are widely used nowadays. In this paper, design and implementation of the heart model can be c...Cardiovascular disease is defined as a heart rate that is less than 60 bpm. Implantable cardiac devices such as pacemakers are widely used nowadays. In this paper, design and implementation of the heart model can be controlled to be the heart of a patient suffering from a decrease in heart rate (Bradycardia). A system is designed to sense and calculate the heart rate per minute and it is considered as an input to the controller. The design and implementation of Mamdani fuzzy controller to generate electric pulses that mimic the natural pacing system of the heart maintains an adequate heart rate by delivering controlled, rhythmic electrical stimuli to the chambers of the patient heart. The proposed controller is tested by using Matlab/Simulink program.展开更多
For oil and gas pipeline monitoring applications, this paper proposed a dual-parameter fusion distributed fiber optic sensor system that enables distributed temperature and distributed vibration measurements in a sing...For oil and gas pipeline monitoring applications, this paper proposed a dual-parameter fusion distributed fiber optic sensor system that enables distributed temperature and distributed vibration measurements in a single fiber. Through the fiber-scattering spectrum time domain detection combined with coded pulse sequence and Raman scattering spectrum is obtained, which realizes high-resolution temperature measurement and wide-band vibrational wave measurement. The experimental results show that, on 10 km optical fiber measurement, temperature resolution up to 0.1?C and vibration response frequency range 20 Hz - 5 kHz. This sensing system achieves temperature and vibration dual-parameter measurements with fiber optics, greatly simplifying the system and facilitating installation and it can be widely used in oil and gas pipeline monitoring.展开更多
Transition metal dichalcogenides(TMDs)are a promising candidate for developing advanced sensors,particularly for day and night vision systems in vehicles,drones,and security surveillance.While traditional systems rely...Transition metal dichalcogenides(TMDs)are a promising candidate for developing advanced sensors,particularly for day and night vision systems in vehicles,drones,and security surveillance.While traditional systems rely on separate sensors for different lighting conditions,TMDs can absorb light across a broad-spectrum range.In this study,a dual vision active pixel image sensor array based on bilayer WS2 phototransistors was implemented.The bilayer WS2 film was synthesized using a combined process of radio-frequency sputtering and chemical vapor deposition.The WS2-based thin-film transistors(TFTs)exhibit high average mobility,excellent Ion/Ioff,and uniform electrical properties.The optoelectronic properties of the TFTs array exhibited consistent behavior and can detect visible to near-infrared light with the highest responsivity of 1821 A W1(at a wavelength of 405 nm)owing to the photogating effect.Finally,red,green,blue,and near-infrared image sensing capabilities of active pixel image sensor array utilizing light stencil projection were demonstrated.The proposed image sensor array utilizing WS2 phototransistors has the potential to revolutionize the field of vision sensing,which could lead to a range of new opportunities in various applications,including night vision,pedestrian detection,various surveillance,and security systems.展开更多
针对水下传感器网络中节点能耗不均衡和能量有限的问题,提出一种能耗均衡与节能的自适应水下路由协议ECBES(energy consumption balanced and energy saving adaptive underwater routing protocol)。构建双区非均匀分层拓扑。基于能耗...针对水下传感器网络中节点能耗不均衡和能量有限的问题,提出一种能耗均衡与节能的自适应水下路由协议ECBES(energy consumption balanced and energy saving adaptive underwater routing protocol)。构建双区非均匀分层拓扑。基于能耗均衡因子,利用拓扑和节点剩余能量计算节点转发优先级,实现自适应转发节点选择,均衡网络能耗。与此同时,通过候选转发区域各分区域中节点参与转发数据包的比例确定次优候选转发区域,将次优候选转发区域作为初始策略,利用策略迭代思想确定最优候选转发区域,保证投递率的同时减少不同网络规模中重复数据包的转发,降低网络的整体能耗。仿真结果表明,ECBES相比VBF、ES-VBF和ALRP,在不同节点数量下,节点死亡率均最低,在保证数据包投递率的同时,能耗最少。展开更多
基金the National Natural Science Foundation of China(Grant No.61705025)Chongqing Natural Science Foundation(Grant Nos.cstc2019jcyjmsxmX0431 and cstc2018jcyjAX0817)+2 种基金the Science and Technology Project Affiliated to the Education Department of Chongqing Municipality(Grant Nos.KJQN201801217,KJQN201901226,KJQN202001214,and KJ1710247)Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-Warning in Three Gorges Reservoir Area(Grant Nos.ZD2020A0103 and ZD2020A0102)Fundamental Research Funds for Chongqing Three Gorges University of China(Grant No.19ZDPY08).
文摘Fiber cladding surface plasmon resonance(SPR)sensors have few structures,and a clad SPR sensor based on S-type fiber is proposed in this paper.This new type of fiber cladding SPR sensor was formed by electrofusing an S-shaped structure on the fiber to couple the light in the fiber core to the cladding.In this paper,the effects of fiber parameters on the performance of the sensor were studied by simulation and experiment.Based on the conclusion that the smaller the core diameter is,the closer the working band of the SPR resonance is to long wavelengths,and that the geometric characteristics mean that a multimode fiber can receive the fiber cladding light from a small core diameter few-mode fiber,a dual channel SPR sensor with a double S-type fiber cascade was proposed.In the refractive index detection range of 1.333–1.385refractive index units(RIU),the resonant working band of channel I is 627.66 nm–759.78 nm,with an average sensitivity of 2540.77 nm/RIU,and the resonant working band of channel II is 518.24 nm–658.2 nm,with an average sensitivity of2691.54 nm/RIU.The processing method for the S-type fiber cladding SPR sensor is simple,effectively solving the problem of this type of SPR sensor structure and the difficult realization of a dual channel.The sensor is expected to be used in the fields of medical treatment and biological analysis.
基金supported by the National Natural Science Foundation of China(Grant No.61705025)the Natural Science Foundation of Heilongjiang Province,China(Grant No.F2018027)+3 种基金partially supported by Chongqing Natural Science Foundation(Grant Nos.cstc2019jcyj-msxmX0431 and cstc2018jcyjAX0817)the Science and Technology Project Affiliated to the Education Department of Chongqing Municipality(Grant Nos.KJQN201801217,KJQN201901226,and KJ1710247)Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-Warning in Three Gorges Reservoir Area(Grant Nos.ZD2020A0103 and ZD2020A0102)the Fundamental Research Funds for Chongqing Three Gorges University of China(Grant No.19ZDPY08).
文摘In order to control the working wavelength range of the fiber surface plasmon resonance(SPR)temperature sensor and realize the wavelength division multiplexing type multi-channel fiber SPR temperature sensor,by comprehensively investigating the influence of liquids with different thermal-optical coefficients and solid packaging materials on the performance of fiber SPR temperature sensor,a dual-channel fiber SPR temperature sensor based on liquid-solid cascade encapsulation was designed and fabricated.The liquid temperature sensing stage encapsulated in capillary worked in 616.03 nm-639.05 nm band,the solid sensing stage coated with pouring sealant worked in 719.37 nm-825.27 nm band,and the two stages were cascaded to form a fiber dual-channel temperature sensor.The testing results indicated that when the temperature range was 35℃-95℃,the sensitivity of two-stage temperature detection was−0.384 nm/℃and−1.765 nm/℃respectively.The proposed fiber sensor has simple fabrication and excellent performance which can be widely used in various fields of dual-channel temperature measurement and temperature compensation.
文摘This work proposes to design a fuzzy proportional-integral derivative (FPID) controller for dual-sensor cardiac pacemaker systems, which can automatically control the heart rate to accurately track a desired preset profile. The combination of fuzzy logic and conventional PID control approaches is adopted for the controller design based on dual-sensors. This controller offers good adaptation of the heart rate to the physiological needs of the patient under different states (rest and walk). Through comparing with the conventional fuzzy control algorithm, FPID provides a more suitable control strategy to determine a pacing rate in order to achieve a closer match between actual heart rate and a desired profile. To assist the heartbeat recovery, the stimuli with adjustable pacing rate is generated by the pacemaker according to the FPID controller, such actual heart rate may track the preset heart rate faithfully. Simulation results confirm that this proposed control design is effective for heartbeat recovery and maintenance. This study will be helpful not only for the analysis and treatment of bradycardias but also for improving the performance of medical devices.
文摘<div style="text-align:justify;"> An in-fiber axial micro-strain sensor based on a Few Mode Fiber Bragg Grating (FM-FBG) is proposed and experimentally characterized. This FM-FBG is in inscribed in a multi-layer few-mode fiber (ML-FMF), and could acquire the change of the axial strain along fibers, which depends on the transmission dips. On account of the distinct dual-mode property, a good stability of this sensor is realized. The two transmission dips could have the different sensing behaviors. Both the propagation characteristics and operation principle of such a sensor are demonstrated in detail. High sensitivity of the FM-FBG, ~4 pm/με and ~4.5 pm/με within the range of 0 με - 1456 με, is experimentally achieved. FM-FBGs could be easily scattered along one fiber. So this sensor may have a great potential of being used in sensor networks. </div>
文摘Cardiovascular disease is defined as a heart rate that is less than 60 bpm. Implantable cardiac devices such as pacemakers are widely used nowadays. In this paper, design and implementation of the heart model can be controlled to be the heart of a patient suffering from a decrease in heart rate (Bradycardia). A system is designed to sense and calculate the heart rate per minute and it is considered as an input to the controller. The design and implementation of Mamdani fuzzy controller to generate electric pulses that mimic the natural pacing system of the heart maintains an adequate heart rate by delivering controlled, rhythmic electrical stimuli to the chambers of the patient heart. The proposed controller is tested by using Matlab/Simulink program.
文摘For oil and gas pipeline monitoring applications, this paper proposed a dual-parameter fusion distributed fiber optic sensor system that enables distributed temperature and distributed vibration measurements in a single fiber. Through the fiber-scattering spectrum time domain detection combined with coded pulse sequence and Raman scattering spectrum is obtained, which realizes high-resolution temperature measurement and wide-band vibrational wave measurement. The experimental results show that, on 10 km optical fiber measurement, temperature resolution up to 0.1?C and vibration response frequency range 20 Hz - 5 kHz. This sensing system achieves temperature and vibration dual-parameter measurements with fiber optics, greatly simplifying the system and facilitating installation and it can be widely used in oil and gas pipeline monitoring.
基金supported in part by the National Research Foundation of Korea(2022M3D1A2083618,2021M3H4A1A02056037,2022H1D3A2A01096362,RS-2023-00237585,RS-2023-00237308)supported in part by Ontario's Ministry of Research,Innovation,and Science through Early Researcher Awards(ER17-13-205)+1 种基金also in part by NSERC Discovery Grant(RGPIN-2020-04070)M.S.is supported in part by the NSERC Canada Graduate Scholarship-Master's(CGS-M)program and the WIN Nanofellowship.
文摘Transition metal dichalcogenides(TMDs)are a promising candidate for developing advanced sensors,particularly for day and night vision systems in vehicles,drones,and security surveillance.While traditional systems rely on separate sensors for different lighting conditions,TMDs can absorb light across a broad-spectrum range.In this study,a dual vision active pixel image sensor array based on bilayer WS2 phototransistors was implemented.The bilayer WS2 film was synthesized using a combined process of radio-frequency sputtering and chemical vapor deposition.The WS2-based thin-film transistors(TFTs)exhibit high average mobility,excellent Ion/Ioff,and uniform electrical properties.The optoelectronic properties of the TFTs array exhibited consistent behavior and can detect visible to near-infrared light with the highest responsivity of 1821 A W1(at a wavelength of 405 nm)owing to the photogating effect.Finally,red,green,blue,and near-infrared image sensing capabilities of active pixel image sensor array utilizing light stencil projection were demonstrated.The proposed image sensor array utilizing WS2 phototransistors has the potential to revolutionize the field of vision sensing,which could lead to a range of new opportunities in various applications,including night vision,pedestrian detection,various surveillance,and security systems.
文摘针对水下传感器网络中节点能耗不均衡和能量有限的问题,提出一种能耗均衡与节能的自适应水下路由协议ECBES(energy consumption balanced and energy saving adaptive underwater routing protocol)。构建双区非均匀分层拓扑。基于能耗均衡因子,利用拓扑和节点剩余能量计算节点转发优先级,实现自适应转发节点选择,均衡网络能耗。与此同时,通过候选转发区域各分区域中节点参与转发数据包的比例确定次优候选转发区域,将次优候选转发区域作为初始策略,利用策略迭代思想确定最优候选转发区域,保证投递率的同时减少不同网络规模中重复数据包的转发,降低网络的整体能耗。仿真结果表明,ECBES相比VBF、ES-VBF和ALRP,在不同节点数量下,节点死亡率均最低,在保证数据包投递率的同时,能耗最少。