针对类美国末段高空域防御(Terminal High Altitude Area Defense,THAAD)系统的红外导引头外形,开展了气动光学效应计算分析,并将其用于飞行器设计。利用国家数值风洞工程高速流场计算软件NNW-HyFLOW,考虑热化学非平衡效应和材料传热耦...针对类美国末段高空域防御(Terminal High Altitude Area Defense,THAAD)系统的红外导引头外形,开展了气动光学效应计算分析,并将其用于飞行器设计。利用国家数值风洞工程高速流场计算软件NNW-HyFLOW,考虑热化学非平衡效应和材料传热耦合效应,对导引头典型状态的流场进行了模拟,获得了流场的密度、温度、压力等参数和窗口的温度场参数。基于流场参数,利用HyFLOW气动光学传输效应计算功能,开展了红外光学传输成像计算;利用HyFLOW气动光学辐射效应计算模块,开展了流场和光学窗口的热辐射计算。计算结果表明,类THAAD导引头在30 km以上飞行时,流场和光学窗口基本不会影响目标信号的光学传输成像,但流场和窗口的热辐射效应会对导引头识别目标造成影响。不过随着飞行高度的升高,这种影响会减小。展开更多
Conventional semi-active laser guidance takes advantage of the laser designator to illuminate the stable and uniform laser spot on target precisely.The seeker collects the reflected light by a quadrant detector and ou...Conventional semi-active laser guidance takes advantage of the laser designator to illuminate the stable and uniform laser spot on target precisely.The seeker collects the reflected light by a quadrant detector and outputs the relative position information to guide the missile to the illuminating laser spot.However,the designation and guidance accuracy could be jeopardized by the randomly drifting of laser spot caused by the instability of designation platform and air turbulence.In this work,ghost imaging technique is adapted to a quadrant detector semi-active seeker by utilizing structured illumination on the target.With a series of structured illumination masks,the signals from the quadrant detector are multiplexed to perform calculation of the target relative position as well as image reconstruction of the illuminated area simultaneously.Automatic target recognition methods could be further applied to the reconstructed image to calculate the designating error and correct the guidance.The results of simulation and experiment demonstrate that the proposed method could improve the guidance accuracy in many circumstances which would lead to attacking deviation if conventional semi-active laser guidance is used.展开更多
Aiming at intercepting large maneuvering targets precisely,the guidance law of advanced self-seeking missiles requires not only inertial line-of-sight(LOS)angular rate but also target maneuvering acceleration.Moreover...Aiming at intercepting large maneuvering targets precisely,the guidance law of advanced self-seeking missiles requires not only inertial line-of-sight(LOS)angular rate but also target maneuvering acceleration.Moreover,the semi-strapdown stabilization platform has lost the ability to measure the inertial LOS angular rate directly,which needs to be extracted by numerical calculation.The differential operation commonly used in traditional methods can magnify the measurement error of the sensor,resulting in insufficient calculation accuracy of the line-of-sight angular rate.By analyzing the mathematical relationship between the missile-target relative motion and the angle tracking system,a multi-process-fusion integrated filter model of relative motion and angle tracking is presented.To overcome the defect that the infrared seeker cannot directly measure the missile-target distance,following the snake-hot-eye visual mechanism,a visual bionic imaging guidance method of estimating the missile-target relative distance from the infrared images is proposed to improve the observability of the filter model.Finally,target-tracking simulations verify that the estimation accuracy of target acceleration is improved by four times.展开更多
文摘针对类美国末段高空域防御(Terminal High Altitude Area Defense,THAAD)系统的红外导引头外形,开展了气动光学效应计算分析,并将其用于飞行器设计。利用国家数值风洞工程高速流场计算软件NNW-HyFLOW,考虑热化学非平衡效应和材料传热耦合效应,对导引头典型状态的流场进行了模拟,获得了流场的密度、温度、压力等参数和窗口的温度场参数。基于流场参数,利用HyFLOW气动光学传输效应计算功能,开展了红外光学传输成像计算;利用HyFLOW气动光学辐射效应计算模块,开展了流场和光学窗口的热辐射计算。计算结果表明,类THAAD导引头在30 km以上飞行时,流场和光学窗口基本不会影响目标信号的光学传输成像,但流场和窗口的热辐射效应会对导引头识别目标造成影响。不过随着飞行高度的升高,这种影响会减小。
基金co-supported by National Natural Science Foundation of China(Nos.61922011 and 61675016)the Fundamental Research Funds for the Central Universities。
文摘Conventional semi-active laser guidance takes advantage of the laser designator to illuminate the stable and uniform laser spot on target precisely.The seeker collects the reflected light by a quadrant detector and outputs the relative position information to guide the missile to the illuminating laser spot.However,the designation and guidance accuracy could be jeopardized by the randomly drifting of laser spot caused by the instability of designation platform and air turbulence.In this work,ghost imaging technique is adapted to a quadrant detector semi-active seeker by utilizing structured illumination on the target.With a series of structured illumination masks,the signals from the quadrant detector are multiplexed to perform calculation of the target relative position as well as image reconstruction of the illuminated area simultaneously.Automatic target recognition methods could be further applied to the reconstructed image to calculate the designating error and correct the guidance.The results of simulation and experiment demonstrate that the proposed method could improve the guidance accuracy in many circumstances which would lead to attacking deviation if conventional semi-active laser guidance is used.
基金sponsored by the National Natural Science Foundation of China under Grant No.51979275the Joint Open Research Fund Program of State Key Laboratory of Hydroscience and Engineering and Tsinghua—Ningxia Yinchuan Joint Institute of Internet of Waters on Digital Water Governance under Grant No.sklhse-2022-Iow08+2 种基金the Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Natural Resources under Grant No.KF-2021-06-115the National Key R&D Program of China under Grant No.2018YFD0700603the 2115 Talent Development Program of China Agricultural University.
文摘Aiming at intercepting large maneuvering targets precisely,the guidance law of advanced self-seeking missiles requires not only inertial line-of-sight(LOS)angular rate but also target maneuvering acceleration.Moreover,the semi-strapdown stabilization platform has lost the ability to measure the inertial LOS angular rate directly,which needs to be extracted by numerical calculation.The differential operation commonly used in traditional methods can magnify the measurement error of the sensor,resulting in insufficient calculation accuracy of the line-of-sight angular rate.By analyzing the mathematical relationship between the missile-target relative motion and the angle tracking system,a multi-process-fusion integrated filter model of relative motion and angle tracking is presented.To overcome the defect that the infrared seeker cannot directly measure the missile-target distance,following the snake-hot-eye visual mechanism,a visual bionic imaging guidance method of estimating the missile-target relative distance from the infrared images is proposed to improve the observability of the filter model.Finally,target-tracking simulations verify that the estimation accuracy of target acceleration is improved by four times.