Experiments were conducted on a diesel-methanol dual-fuel(DMDF)engine modified by a six-cylinder,turbocharged,inter-cooled diesel engine.According to the number of diesel injection,the experiments are divided to two p...Experiments were conducted on a diesel-methanol dual-fuel(DMDF)engine modified by a six-cylinder,turbocharged,inter-cooled diesel engine.According to the number of diesel injection,the experiments are divided to two parts:the single injectionmode and double injectionmode.The results show that,at the double injectionmode,themaximumof pressure rise rate is small and the engine runs smoothly,however,knock still occurswhen the cocombustion ratio(CCR)is big enough.Under knock status,the power density of the block vibration concentrating at some special frequencies rises dramatically,and the special frequency of single injection mode(about 4.1 kHz)is lower than that of double injection mode(7–9 kHz).The cylinder pressure oscillations of knock status are very different fromthe non-knock status.Under knock status,cylinder pressure oscillations become more concentrated and fiercer at some special frequencies,and the same as the block vibration.The special frequency of single injection mode(3–6 kHz)is lower than that of double injection mode(above 9 kHz).展开更多
This study considers the effect of Eichhornia Crassipes Biodiesel(ECB)blends on the performances,combustion,and emission characteristics of a direct injection compression ignition engine operated in a dual-fuel mode(D...This study considers the effect of Eichhornia Crassipes Biodiesel(ECB)blends on the performances,combustion,and emission characteristics of a direct injection compression ignition engine operated in a dual-fuel mode(DFM)and equipped with an Exhaust gas recirculation technique(EGR).In particular,a single-cylinder,four-stroke,water-cooled diesel engine was utilized and four modes of fuel operation were considered:mode I,the engine operated with an ordinary diesel fuel;mode II,the engine operated with the addition of 2.4 L/min of lique-fied petroleum gas(LPG)and 20%EGR;mode III,20%ECB with 2.4 L/min LPG and 20%EGR;mode IV,40%ECB with 2.4 L/min LPG and 20%EGR.The operation conditions were constant engine speed(1500 rpm),var-iation of load(25%,50%,75%,and 100%),full load,with a compression ratio of 18,and a time injection of 23°BTDC(Before top died center).With regard to engine emissions,carbon dioxide(CO_(2)),carbon monoxide(CO),hydrocarbons(UHC),and nitrogen oxide(NOX)were measured using a gas analyzer.The smoke opacity was measured using an OPABOX smoke meter.By comparing the results related to the different modes with mode I at full load,the BTE(Brake thermal efficiency)increased by 20.17%,11.45%,and 12.66%with modes II,III,and IV,respectively.In comparison to the results for mode II,the BTE decreased due to the combustion of ECB blends by 7.26%and 6.24%for mode III and mode IV,respectively,at full load.In comparison to mode II,the Brake specific energy consumption(BSEC)increased with the ECB substitution.With ECB blends,there is a noticeable decrease in the CO,CO_(2),and UHC emissions at a partial load.Furthermore,the 20%ECB has no effect on CO emissions at full load.For modes II and IV,the CO_(2)increased by 33.33%and 19%,respectively,while the UHC emissions were reduced by 14.49%for mode III and 26.08%for mode IV.The smoke of mode III was lower by 7.21%,but for mode IV,it was higher by 12.37%.In addition,with mode III and mode IV,the NOx emissions increased by 30.50%and 18.80%,respectively.展开更多
As of 2020,shipping companies will have to use low-sulphur fuels to comply with current international regulations set out in Annex VI of the MARPOL Agreement(regulations for the prevention of air pollution from ships)...As of 2020,shipping companies will have to use low-sulphur fuels to comply with current international regulations set out in Annex VI of the MARPOL Agreement(regulations for the prevention of air pollution from ships),which will limit the maximum sulphur content in marine fuels to 0.5%.It is against this backdrop that natural gas(LNG)is being considered as one of the primary alternative fuels to enable compliance with this international regulation.Currently,there are 103 LNG-fuelled vessels in operation around the world and 97 on order.Car and passenger vessels make up the largest segment,accounting for 40 of the 103;none of these,however,is a high-speed(HSC)ropax vessel with capacity for both passengers and trucksi n open seas.HSC vessels are deployed in niche markets requiring high-speed propulsion engines(around 1,000 rpm)that can maintain service speeds.Existing LNG dual-fuel engines cannot be used to retrofit HSC vessels as they have been developed from a range of medium-speed engines(around 500-700 rpm)and they are heavier than those high-speed engines traditionally used by the HSC industry.This paper presents the innovative technology developed for the world’s first adaptation of a high-speed engine to LNG dual-fuel use by the shipping company Fred.Olsen S.A.,within the GAINN4SHIP INNOVATION project.展开更多
Nowadays alternative and innovative energy recovery solutions are adopted on board ships to reduce fuel consumption and harmful emissions.According to this,the present work compares the engine exhaust gas waste heat r...Nowadays alternative and innovative energy recovery solutions are adopted on board ships to reduce fuel consumption and harmful emissions.According to this,the present work compares the engine exhaust gas waste heat recovery and hybrid turbocharger technologies,which are used to improve the efficiency of a dual-fuel four-stroke(DF)marine engine.Both solutions aim to satisfy partly or entirely the ship’s electrical and/or thermal loads.For the engine exhaust gas waste heat recovery,two steam plant schemes are considered:the single steam pressure and the variable layout(single or dual steam pressure plant).In both cases,a heat recovery steam generator is used for the electric power energy generation through a steam turbine.The hybrid turbocharger is used to provide a part of the ship’s electric loads as well.The thermodynamic mathematical models of DF engines,integrated with the energy recovery systems,are developed in a Matlab-Simulink environment,allowing the comparison in terms of performance at different engine loads and fuels,which are Natural Gas(NG)and High Fuel Oil(HFO).The use of NG always involves better efficiency of the system for all the engine working conditions.It results that the highest efficiency value achievable is 56%at 50%maximum continuous rating(MCR)engine load.展开更多
In this study,environmental and economic examinations of Liquefied Natural Gas(LNG)investments are conducted.A year-long noon report data is received from a container ship and LNG conversion is performed.Savings from ...In this study,environmental and economic examinations of Liquefied Natural Gas(LNG)investments are conducted.A year-long noon report data is received from a container ship and LNG conversion is performed.Savings from both the fuel expenses and the amount of the emissions are calculated and presented.To eliminate the fuel consumption uncertainties in future operation periods of the stated ship,different scenarios that simulate various fuel consumption statuses are created and analyzed within the Monte Carlo Simulation method.Lastly,calculations are made with two different time prices,approx.one and half year apart.As a result of the analyses,LNG can provide high environmental benefits since it reduces 99%for SOx,95%for PM10,95%for PM2.5,41%for CO_(2),and 82%for NOx,respectively.It is also determined that LNG investment is highly sensitive to fuel prices.In addition,the LNG usage can be beneficial for maritime companies in terms of marine policies such as paying carbon tax based on the expanding European Union Emission Trade System to maritime business.Still,it needs supportive carbon reduction method to comply with the maritime decarbonization strategy.This study has great importance in that the economic analysis way presented is able to adapt any alternative fuel system conversion for the maritime industry.展开更多
In this experimental work,an optically accessible rapid compression machine is used to study the ignition and combustion process under engine relevant operation conditions for five different air-natural gas equivalenc...In this experimental work,an optically accessible rapid compression machine is used to study the ignition and combustion process under engine relevant operation conditions for five different air-natural gas equivalence ratios(λ)ignited with either 12.2 mg or 6.7 mg of pilot diesel injected at 1,600 bar.Initial temperature of the ambient mixture,walls and injector was 333 K.Additionally,for the short(6.7 mg)diesel injection,the variation in the ID(ignition delay)for two higher ambient temperatures(343 K and 353 K)was measured.Pressure and piston displacement are recorded while two high-speed cameras simultaneously capture signals in the visible range spectrum and at 305 nm wavelength for OH^(*)chemiluminescence respectively.ID is measured both from OH^(*)and pressure rise.From the recorded data,the heat release ratio is estimated and compared with the visual signals.This gives an insight of the temporal and spatial evolution of the flame,as well as a qualitative perception of the transition from spray ignition into a premixed flame in the ambient fuel-air mixture.It was found that increasing the methane concertation delays the ignition,reduces the natural flame luminosity and enhances the OH^(*)chemiluminescence signal.展开更多
The work is a case study of a cruise ship supplied by liquefied natural gas(LNG)and equipped with a solid oxide fuel cell(SOFC).It is supposed that a 20 MW SOFC plant is installed on-board to supply hotel loads and as...The work is a case study of a cruise ship supplied by liquefied natural gas(LNG)and equipped with a solid oxide fuel cell(SOFC).It is supposed that a 20 MW SOFC plant is installed on-board to supply hotel loads and assisting three dual-fuel(DF)diesel/LNG generator sets.LNG consumption and emissions are estimated both for the SOFC plant and DF generator sets.It results that the use of LNG-SOFC plant in comparison to DF generator sets allows to limit significantly the SO_(x),CO,NO_(x),PM emissions and to reduce the emission of CO_(2)by about 11%.A prediction of the weight and volume of the SOFC plant is conducted and a preliminary modification of the general arrangement of the cruise ship is suggested,according to the latest international rules.It results that the SOFC plant is heavier and occupies more volume on board than a DF gen-set;nevertheless,these features do not affect the floating and the stability of the cruise ship.展开更多
In this research, a Direct Injection Compression Ignition (DICI) engine was modified into a dual-fuel engine that used biogas as the primary fuel and diesel as pilot fuel, with the focus on reduction of harmful exhaus...In this research, a Direct Injection Compression Ignition (DICI) engine was modified into a dual-fuel engine that used biogas as the primary fuel and diesel as pilot fuel, with the focus on reduction of harmful exhaust emissions while maintaining high thermal efficiency. The effect of exhaust gas recirculation (EGR) on engine performance and emission characteristics was studied. The EGR system was developed and tested with different EGR percentages, i.e. 0%, 10%, 20% and 30%. The effect of EGR on exhaust gas temperature and performance parameters like brake specific fuel consumption, brake power and brake thermal efficiency was studied. The performance and emission characteristics of the modified engine were compared with those of the conventional diesel engine. The results showed that EGR led to a decrease in specific fuel consumption and an increase in brake thermal efficiency. With increase in percent (%) of EGR, the percentage increase in brake thermal efficiency was up to 10.3% at quarter load and up to 14.5% at full load for single fuel operation while for dual-fuel operation an increase up to 9.5% at quarter load and up to 11.2% at full load was observed. The results also showed that EGR caused a decrease in exhaust gas temperature;hence it’s potential to reduce NOX emission. However, emissions of HC and CO increased slightly with EGR.展开更多
The energy security concern and rapidly diminishing fossil fuel resources demand the development of renewable and economically attractive fuel for reciprocating engines.Methanol is a promising renewable alternative fu...The energy security concern and rapidly diminishing fossil fuel resources demand the development of renewable and economically attractive fuel for reciprocating engines.Methanol is a promising renewable alternative fuel.Numerous studies have been carried out to explore the various aspects of the utilization of methanol in compression ignition(CI)engine.This review paper presents a detailed analysis of the effect of methanol on performance,combustion,and emission(NOx,CO,HC,and soot)characteristics of conventional CI-engine along with dual-fuel combustion mode.This study focuses on methanol utilization in dual-fuel mode,which is an advanced engine combustion mode.First,methanol production and solubility issues of methanol in diesel are briefly discussed.This study discusses the soot and nano-particle emission from the methanol fueled CI-engine,which is one of the main concerns in the current emission legislation.It was found that the utilization of methanol in CI-engine has the potential to improve the performance and simultaneously with a significant reduction in NOx,CO,soot,and nano-particle emissions in comparison to neat diesel operation.However,unburnt HC emission reduces for methanol-diesel blended fuel operation whereas HC emissions are higher for methanoldiesel dual-fuel operation.展开更多
This paper experimentally and numerically studied the effects of fuel combination and intake valve opening(IVO)timing on combustion and emissions of an n-heptane and gasoline dual-flicl homogeneous charge compression ...This paper experimentally and numerically studied the effects of fuel combination and intake valve opening(IVO)timing on combustion and emissions of an n-heptane and gasoline dual-flicl homogeneous charge compression ignition(HCCI)engine.By changing the gasoline fraction(GF)from 0」to 0.5 and the IVO timing from-15°CA ATDC to 35°CA ATDC,the in-cylinder pressure traces,heat release behaviors,and HC and CO emissions were investigated.The results showed that both the increased GF and the retarded IVO timing delay the combustion phasing,lengthen the combustion duration,and decrease the peak heat release rate and the maximum average combustion temperature,whereas the IVO timing has a more obvious influence on combustion than GF.HC and CO emissions are decreased with reduced GF,advanced IVO timing and increased operational load.展开更多
The development of maritime trade has greatly promoted the development of diesel engines.However,with the increasingly serious environmental problems,more and more attention has been paid to the exhaust emissions of h...The development of maritime trade has greatly promoted the development of diesel engines.However,with the increasingly serious environmental problems,more and more attention has been paid to the exhaust emissions of high-power marine diesel engines.The restrictions on SOx have been implemented globally,and the limitation of the NO,will be the next priority.This paper illustrates(a)Principle and research progress of NOx emissions-reduction technology of marine diesel engine;(b)Summary of advantages and disadvantages among various reduction technologies and their reduction effects;(c)The application effect of mainstream technology on board.Firstly,since exhaust gas recirculation(EGR)can achieve Tier-Ⅲ directly from Tier-Ⅰ without considering the increased fuel consumption.It is deemed as the most promising technology to reduce emissions by controlling combustion condition.However,EGR has shortcomings of excessive increase in ftiel consumption and generation of waste water,which need to be solved immediately.Secondly,selective catalytic reduction(SCR)is the most effective and straightforward means to achieve Tier-Ⅲ.Despite of the continuous optimization of SCR unit volume,the problem of scrap catalyst seriously limits its wide application.How to match the supercharger more efficiently is a key factor in choosing between high and low pressure SCR.Thirdly,nature gas(NG)engines are capable of achieving a reduction in NOx,but in order to meet the requirements of Tier-Ⅲ,it still needs to be assisted by other technologies.The emissions of hydrocarbon(HC)and CO in NG engines are huge defects that must be solved.Lastly,technologies such as the Miller cycle,Two-stage supercharging and mixed-water combustion can also reduce emissions but were rarely used alone.These technologies can be combined with EGR,SCR and NG engines to optimize the enginesJ economy and emission characteristics.展开更多
Natural gas engines have become increasingly important in transportation applications,especially in the commercial vehicle sector.With increasing demand for high efficiency and low emissions,new technologies must be e...Natural gas engines have become increasingly important in transportation applications,especially in the commercial vehicle sector.With increasing demand for high efficiency and low emissions,new technologies must be explored to overcome the performance limitations of natural gas engines such as limits on lean or dilute combustion,unstable combustion,low burning velocity,and high emissions of CH_(4) and NO_(x).This paper reviews the progress of research on natural gas engines over recent decades,concentrating on ignition and combustion systems,mixture preparation,the development of different combustion modes,and after-treatment strategies.First,the features,advantages,and disadvantages of natural gas engines are introduced,following which the development of advanced ignition systems,organization of highly turbulent flows,and the preparation of high-reactivity mixtures in spark ignition engines are discussed with a focus on pre-chamber jet ignition,combustion chamber design,and H_(2)-enriched natural gas combustion.Third,the progress in natural gas dual-fuel engines is highlighted,including the exploration of new combustion modes,the development of novel pilot fuels,and the optimization of combustion control strategies.The fourth section discusses after-treatment systems for natural gas engines operating in different combustion modes.Finally,conclusions and future trends in the development of high-efficiency and clean combus-tion in natural gas engines are summarized.展开更多
The internal combustion engines can remain the advantage over competitor technologies for automotive driven,especially the engine efficiency,exceeded 50%while maintaining ultra-low emissions.In this paper,a novel comb...The internal combustion engines can remain the advantage over competitor technologies for automotive driven,especially the engine efficiency,exceeded 50%while maintaining ultra-low emissions.In this paper,a novel combustion mode characterized by dual high-pressure common-rail direct injection systems,denoted as intelligent charge compression ignition(ICCI)combustion,is proposed to realize high efficiency and clean combustion in wide engine operating ranges.Specifically,commercial gasoline and diesel,which are considered to be complementary in physical and chemical properties,are directly injected into the cylinder by the two independent injection systems,respectively.Through this unique design,the in-cylinder air-fuel mixtures can be flexibly adjusted by regulating injection timing and duration of different fuels,consequently obtaining suitable combustion phase and heat release rate.The ICCI mode can widely run from indicated mean effective pressure 2 bar to 16 bar with an utterly controllable cylinder pressure rising rate,around 50%indicated thermal efficiency and low NOxemissions.A series of experiments were carried out to compare the combustion and emissions of ICCI with other combustion modes(including conventional diesel combustion,reactivity-controlled compression ignition,partially premixed combustion,and gasoline compression ignition).The results show that at the medium engine loads,ICCI mode can reach much high indicated thermal efficiency,especially up to 52%along with extremely low NOxemissions.Prospectively,ICCI mode can realize real-time adjustments of in-cylinder mixture stratification and instantaneous combustion mode switch in one cycle at any operating conditions,and has an excellent commercial application prospect for energy conservation and environmental improvement.展开更多
基金funded by the Science Research Project of State Grid Shaanxi Electric Power Company(5226 KY22001J)Yulin Science and Technology Planning Project(CXY-2020-024)+1 种基金Natural Science Basic Research Plan of Shaanxi(2018JQ5115,2020JM-243)the Special Fund for Basic Scientific Research of Central Colleges,Chang’an University(2018JQ5115).
文摘Experiments were conducted on a diesel-methanol dual-fuel(DMDF)engine modified by a six-cylinder,turbocharged,inter-cooled diesel engine.According to the number of diesel injection,the experiments are divided to two parts:the single injectionmode and double injectionmode.The results show that,at the double injectionmode,themaximumof pressure rise rate is small and the engine runs smoothly,however,knock still occurswhen the cocombustion ratio(CCR)is big enough.Under knock status,the power density of the block vibration concentrating at some special frequencies rises dramatically,and the special frequency of single injection mode(about 4.1 kHz)is lower than that of double injection mode(7–9 kHz).The cylinder pressure oscillations of knock status are very different fromthe non-knock status.Under knock status,cylinder pressure oscillations become more concentrated and fiercer at some special frequencies,and the same as the block vibration.The special frequency of single injection mode(3–6 kHz)is lower than that of double injection mode(above 9 kHz).
文摘This study considers the effect of Eichhornia Crassipes Biodiesel(ECB)blends on the performances,combustion,and emission characteristics of a direct injection compression ignition engine operated in a dual-fuel mode(DFM)and equipped with an Exhaust gas recirculation technique(EGR).In particular,a single-cylinder,four-stroke,water-cooled diesel engine was utilized and four modes of fuel operation were considered:mode I,the engine operated with an ordinary diesel fuel;mode II,the engine operated with the addition of 2.4 L/min of lique-fied petroleum gas(LPG)and 20%EGR;mode III,20%ECB with 2.4 L/min LPG and 20%EGR;mode IV,40%ECB with 2.4 L/min LPG and 20%EGR.The operation conditions were constant engine speed(1500 rpm),var-iation of load(25%,50%,75%,and 100%),full load,with a compression ratio of 18,and a time injection of 23°BTDC(Before top died center).With regard to engine emissions,carbon dioxide(CO_(2)),carbon monoxide(CO),hydrocarbons(UHC),and nitrogen oxide(NOX)were measured using a gas analyzer.The smoke opacity was measured using an OPABOX smoke meter.By comparing the results related to the different modes with mode I at full load,the BTE(Brake thermal efficiency)increased by 20.17%,11.45%,and 12.66%with modes II,III,and IV,respectively.In comparison to the results for mode II,the BTE decreased due to the combustion of ECB blends by 7.26%and 6.24%for mode III and mode IV,respectively,at full load.In comparison to mode II,the Brake specific energy consumption(BSEC)increased with the ECB substitution.With ECB blends,there is a noticeable decrease in the CO,CO_(2),and UHC emissions at a partial load.Furthermore,the 20%ECB has no effect on CO emissions at full load.For modes II and IV,the CO_(2)increased by 33.33%and 19%,respectively,while the UHC emissions were reduced by 14.49%for mode III and 26.08%for mode IV.The smoke of mode III was lower by 7.21%,but for mode IV,it was higher by 12.37%.In addition,with mode III and mode IV,the NOx emissions increased by 30.50%and 18.80%,respectively.
文摘As of 2020,shipping companies will have to use low-sulphur fuels to comply with current international regulations set out in Annex VI of the MARPOL Agreement(regulations for the prevention of air pollution from ships),which will limit the maximum sulphur content in marine fuels to 0.5%.It is against this backdrop that natural gas(LNG)is being considered as one of the primary alternative fuels to enable compliance with this international regulation.Currently,there are 103 LNG-fuelled vessels in operation around the world and 97 on order.Car and passenger vessels make up the largest segment,accounting for 40 of the 103;none of these,however,is a high-speed(HSC)ropax vessel with capacity for both passengers and trucksi n open seas.HSC vessels are deployed in niche markets requiring high-speed propulsion engines(around 1,000 rpm)that can maintain service speeds.Existing LNG dual-fuel engines cannot be used to retrofit HSC vessels as they have been developed from a range of medium-speed engines(around 500-700 rpm)and they are heavier than those high-speed engines traditionally used by the HSC industry.This paper presents the innovative technology developed for the world’s first adaptation of a high-speed engine to LNG dual-fuel use by the shipping company Fred.Olsen S.A.,within the GAINN4SHIP INNOVATION project.
文摘Nowadays alternative and innovative energy recovery solutions are adopted on board ships to reduce fuel consumption and harmful emissions.According to this,the present work compares the engine exhaust gas waste heat recovery and hybrid turbocharger technologies,which are used to improve the efficiency of a dual-fuel four-stroke(DF)marine engine.Both solutions aim to satisfy partly or entirely the ship’s electrical and/or thermal loads.For the engine exhaust gas waste heat recovery,two steam plant schemes are considered:the single steam pressure and the variable layout(single or dual steam pressure plant).In both cases,a heat recovery steam generator is used for the electric power energy generation through a steam turbine.The hybrid turbocharger is used to provide a part of the ship’s electric loads as well.The thermodynamic mathematical models of DF engines,integrated with the energy recovery systems,are developed in a Matlab-Simulink environment,allowing the comparison in terms of performance at different engine loads and fuels,which are Natural Gas(NG)and High Fuel Oil(HFO).The use of NG always involves better efficiency of the system for all the engine working conditions.It results that the highest efficiency value achievable is 56%at 50%maximum continuous rating(MCR)engine load.
文摘In this study,environmental and economic examinations of Liquefied Natural Gas(LNG)investments are conducted.A year-long noon report data is received from a container ship and LNG conversion is performed.Savings from both the fuel expenses and the amount of the emissions are calculated and presented.To eliminate the fuel consumption uncertainties in future operation periods of the stated ship,different scenarios that simulate various fuel consumption statuses are created and analyzed within the Monte Carlo Simulation method.Lastly,calculations are made with two different time prices,approx.one and half year apart.As a result of the analyses,LNG can provide high environmental benefits since it reduces 99%for SOx,95%for PM10,95%for PM2.5,41%for CO_(2),and 82%for NOx,respectively.It is also determined that LNG investment is highly sensitive to fuel prices.In addition,the LNG usage can be beneficial for maritime companies in terms of marine policies such as paying carbon tax based on the expanding European Union Emission Trade System to maritime business.Still,it needs supportive carbon reduction method to comply with the maritime decarbonization strategy.This study has great importance in that the economic analysis way presented is able to adapt any alternative fuel system conversion for the maritime industry.
基金the European Research Council with a“Horizon Europe:Marie Skłodowska-Curie Actions”grant and it can be disseminated freely.
文摘In this experimental work,an optically accessible rapid compression machine is used to study the ignition and combustion process under engine relevant operation conditions for five different air-natural gas equivalence ratios(λ)ignited with either 12.2 mg or 6.7 mg of pilot diesel injected at 1,600 bar.Initial temperature of the ambient mixture,walls and injector was 333 K.Additionally,for the short(6.7 mg)diesel injection,the variation in the ID(ignition delay)for two higher ambient temperatures(343 K and 353 K)was measured.Pressure and piston displacement are recorded while two high-speed cameras simultaneously capture signals in the visible range spectrum and at 305 nm wavelength for OH^(*)chemiluminescence respectively.ID is measured both from OH^(*)and pressure rise.From the recorded data,the heat release ratio is estimated and compared with the visual signals.This gives an insight of the temporal and spatial evolution of the flame,as well as a qualitative perception of the transition from spray ignition into a premixed flame in the ambient fuel-air mixture.It was found that increasing the methane concertation delays the ignition,reduces the natural flame luminosity and enhances the OH^(*)chemiluminescence signal.
文摘The work is a case study of a cruise ship supplied by liquefied natural gas(LNG)and equipped with a solid oxide fuel cell(SOFC).It is supposed that a 20 MW SOFC plant is installed on-board to supply hotel loads and assisting three dual-fuel(DF)diesel/LNG generator sets.LNG consumption and emissions are estimated both for the SOFC plant and DF generator sets.It results that the use of LNG-SOFC plant in comparison to DF generator sets allows to limit significantly the SO_(x),CO,NO_(x),PM emissions and to reduce the emission of CO_(2)by about 11%.A prediction of the weight and volume of the SOFC plant is conducted and a preliminary modification of the general arrangement of the cruise ship is suggested,according to the latest international rules.It results that the SOFC plant is heavier and occupies more volume on board than a DF gen-set;nevertheless,these features do not affect the floating and the stability of the cruise ship.
文摘In this research, a Direct Injection Compression Ignition (DICI) engine was modified into a dual-fuel engine that used biogas as the primary fuel and diesel as pilot fuel, with the focus on reduction of harmful exhaust emissions while maintaining high thermal efficiency. The effect of exhaust gas recirculation (EGR) on engine performance and emission characteristics was studied. The EGR system was developed and tested with different EGR percentages, i.e. 0%, 10%, 20% and 30%. The effect of EGR on exhaust gas temperature and performance parameters like brake specific fuel consumption, brake power and brake thermal efficiency was studied. The performance and emission characteristics of the modified engine were compared with those of the conventional diesel engine. The results showed that EGR led to a decrease in specific fuel consumption and an increase in brake thermal efficiency. With increase in percent (%) of EGR, the percentage increase in brake thermal efficiency was up to 10.3% at quarter load and up to 14.5% at full load for single fuel operation while for dual-fuel operation an increase up to 9.5% at quarter load and up to 11.2% at full load was observed. The results also showed that EGR caused a decrease in exhaust gas temperature;hence it’s potential to reduce NOX emission. However, emissions of HC and CO increased slightly with EGR.
基金Financial support of CSIR through SRA under Scientists Pool Scheme to Dr.Mohit Raj Saxena is gratefully acknowledged。
文摘The energy security concern and rapidly diminishing fossil fuel resources demand the development of renewable and economically attractive fuel for reciprocating engines.Methanol is a promising renewable alternative fuel.Numerous studies have been carried out to explore the various aspects of the utilization of methanol in compression ignition(CI)engine.This review paper presents a detailed analysis of the effect of methanol on performance,combustion,and emission(NOx,CO,HC,and soot)characteristics of conventional CI-engine along with dual-fuel combustion mode.This study focuses on methanol utilization in dual-fuel mode,which is an advanced engine combustion mode.First,methanol production and solubility issues of methanol in diesel are briefly discussed.This study discusses the soot and nano-particle emission from the methanol fueled CI-engine,which is one of the main concerns in the current emission legislation.It was found that the utilization of methanol in CI-engine has the potential to improve the performance and simultaneously with a significant reduction in NOx,CO,soot,and nano-particle emissions in comparison to neat diesel operation.However,unburnt HC emission reduces for methanol-diesel blended fuel operation whereas HC emissions are higher for methanoldiesel dual-fuel operation.
基金the National Natural Science Foundation of China(Grant Nos.51861135303 and 51776124)the Shanghai Science and Technology Committee,China(Grant No.19160745400).
文摘This paper experimentally and numerically studied the effects of fuel combination and intake valve opening(IVO)timing on combustion and emissions of an n-heptane and gasoline dual-flicl homogeneous charge compression ignition(HCCI)engine.By changing the gasoline fraction(GF)from 0」to 0.5 and the IVO timing from-15°CA ATDC to 35°CA ATDC,the in-cylinder pressure traces,heat release behaviors,and HC and CO emissions were investigated.The results showed that both the increased GF and the retarded IVO timing delay the combustion phasing,lengthen the combustion duration,and decrease the peak heat release rate and the maximum average combustion temperature,whereas the IVO timing has a more obvious influence on combustion than GF.HC and CO emissions are decreased with reduced GF,advanced IVO timing and increased operational load.
基金The authors thank the financial support are as follow:Natural Science Foundation Committee of China(No.51709163)China Postdoctoral Science Foundation(No.2018T110382)Shanghai Sailing Program(No.17YF1407500).
文摘The development of maritime trade has greatly promoted the development of diesel engines.However,with the increasingly serious environmental problems,more and more attention has been paid to the exhaust emissions of high-power marine diesel engines.The restrictions on SOx have been implemented globally,and the limitation of the NO,will be the next priority.This paper illustrates(a)Principle and research progress of NOx emissions-reduction technology of marine diesel engine;(b)Summary of advantages and disadvantages among various reduction technologies and their reduction effects;(c)The application effect of mainstream technology on board.Firstly,since exhaust gas recirculation(EGR)can achieve Tier-Ⅲ directly from Tier-Ⅰ without considering the increased fuel consumption.It is deemed as the most promising technology to reduce emissions by controlling combustion condition.However,EGR has shortcomings of excessive increase in ftiel consumption and generation of waste water,which need to be solved immediately.Secondly,selective catalytic reduction(SCR)is the most effective and straightforward means to achieve Tier-Ⅲ.Despite of the continuous optimization of SCR unit volume,the problem of scrap catalyst seriously limits its wide application.How to match the supercharger more efficiently is a key factor in choosing between high and low pressure SCR.Thirdly,nature gas(NG)engines are capable of achieving a reduction in NOx,but in order to meet the requirements of Tier-Ⅲ,it still needs to be assisted by other technologies.The emissions of hydrocarbon(HC)and CO in NG engines are huge defects that must be solved.Lastly,technologies such as the Miller cycle,Two-stage supercharging and mixed-water combustion can also reduce emissions but were rarely used alone.These technologies can be combined with EGR,SCR and NG engines to optimize the enginesJ economy and emission characteristics.
基金This work is supported by the Key Program of National Natural Science Foundation of China(21761142012)the National Key Research and Development Program of China[2016YFB0101402][2017YFE0102800].
文摘Natural gas engines have become increasingly important in transportation applications,especially in the commercial vehicle sector.With increasing demand for high efficiency and low emissions,new technologies must be explored to overcome the performance limitations of natural gas engines such as limits on lean or dilute combustion,unstable combustion,low burning velocity,and high emissions of CH_(4) and NO_(x).This paper reviews the progress of research on natural gas engines over recent decades,concentrating on ignition and combustion systems,mixture preparation,the development of different combustion modes,and after-treatment strategies.First,the features,advantages,and disadvantages of natural gas engines are introduced,following which the development of advanced ignition systems,organization of highly turbulent flows,and the preparation of high-reactivity mixtures in spark ignition engines are discussed with a focus on pre-chamber jet ignition,combustion chamber design,and H_(2)-enriched natural gas combustion.Third,the progress in natural gas dual-fuel engines is highlighted,including the exploration of new combustion modes,the development of novel pilot fuels,and the optimization of combustion control strategies.The fourth section discusses after-treatment systems for natural gas engines operating in different combustion modes.Finally,conclusions and future trends in the development of high-efficiency and clean combus-tion in natural gas engines are summarized.
基金supported by the National Natural Science Foundation of China(Grant Nos.51961135105,51425602)。
文摘The internal combustion engines can remain the advantage over competitor technologies for automotive driven,especially the engine efficiency,exceeded 50%while maintaining ultra-low emissions.In this paper,a novel combustion mode characterized by dual high-pressure common-rail direct injection systems,denoted as intelligent charge compression ignition(ICCI)combustion,is proposed to realize high efficiency and clean combustion in wide engine operating ranges.Specifically,commercial gasoline and diesel,which are considered to be complementary in physical and chemical properties,are directly injected into the cylinder by the two independent injection systems,respectively.Through this unique design,the in-cylinder air-fuel mixtures can be flexibly adjusted by regulating injection timing and duration of different fuels,consequently obtaining suitable combustion phase and heat release rate.The ICCI mode can widely run from indicated mean effective pressure 2 bar to 16 bar with an utterly controllable cylinder pressure rising rate,around 50%indicated thermal efficiency and low NOxemissions.A series of experiments were carried out to compare the combustion and emissions of ICCI with other combustion modes(including conventional diesel combustion,reactivity-controlled compression ignition,partially premixed combustion,and gasoline compression ignition).The results show that at the medium engine loads,ICCI mode can reach much high indicated thermal efficiency,especially up to 52%along with extremely low NOxemissions.Prospectively,ICCI mode can realize real-time adjustments of in-cylinder mixture stratification and instantaneous combustion mode switch in one cycle at any operating conditions,and has an excellent commercial application prospect for energy conservation and environmental improvement.