The development of highly active,selective,and stable electrocatalysts can facilitate the effective implementation of electrocatalytic CO_(2)conversion into fuels or chemicals for mitigating the energy crisis and clim...The development of highly active,selective,and stable electrocatalysts can facilitate the effective implementation of electrocatalytic CO_(2)conversion into fuels or chemicals for mitigating the energy crisis and climate problems.Therefore,it is necessary to achieve the goal through reasonable material design based on the actuality of the operational active site at the molecular scale.Inspired by the stimulating synergistic effect of coupled heteronuclear metal atoms,a novel Ni-Co atomic pairs configuration(denoted as NiN_(3)?CoN_(3)-NC)active site was theoretically screened out for improving electrochemical CO_(2)reduction reaction(CO_(2)RR).The structure of NiN_(3)?CoN_(3)-NC was finely regulated by adjusting Zn content in the precursors Zn/Co/Ni-zeolite imidazolate frameworks(Zn/Co/Ni-ZIFs)and pyrolysis temperature.The structural features of NiN_(3)?CoN_(3)-NC were systematically confirmed by aberration-corrected HAADF-STEM coupled with 3D atom-overlapping Gaussian-function fitting mapping,XAFS,and XRD.The results of theoretical calculations reveal that the synergistic effect of Ni-Co atomic pairs can effectively promote the*COOH intermediate formation and thus the overall CO_(2)RR kinetic was improved,and also restrained the competitive hydrogen evolution reaction.Due to the attributes of Ni-Co atomic pairs configuration,the developed NiN_(3)?CoN_(3)-NC with superior catalytic activity,selectivity,and durability,with a high turnover frequency of 2265 h^(-1)at-1.1 V(vs.RHE)and maximum Faradaic efficiency of 97.7%for CO production.This work demonstrates the great potential of DACs as highly efficient catalysts for CO_(2)RR,provides a useful strategy to design heteronuclear DACs,exploits the synergistic effect of multiple metal sites to facilitate complex CO_(2)RR catalytic reactions,and inspires more efforts to develop the potential of DACs in various fields.展开更多
After explorations in a diversity of single-atom nanozymes(SAzymes),developing dual-centered SAzymes becomes a promising approach for superior catalytic performance.But confusing mechanisms including atomic coordinati...After explorations in a diversity of single-atom nanozymes(SAzymes),developing dual-centered SAzymes becomes a promising approach for superior catalytic performance.But confusing mechanisms including atomic coordination,spatial configuration,and metal–metal atom interaction hinder the development and design of SAzymes.Herein,a dual-centered Fe-Cu-N_(x)SAzyme exhibits excellent peroxidase(POD)-and catalase(CAT)-like activities with d-band center(ε_(d))coordination of Fe and Cu in multiple reaction stages,which plays a critical role in the adsorption of H_(2)O_(2)molecule and H_(2)O and O_(2)release.Therefore,the dband center coordination,which can be represented byε_(d)(Fe)–ε_(d)(Cu)shifts,leads to the competition between one-side and bilateral adsorption,which determines the favorable reaction path with lower energy barriers.Based on experimental statistics,simulated formation energies,and reaction barriers,3 configurations,Fe-Cu-N6-I,Fe-Cu-N_(8)-II,and Fe-Cu-N_(8)-III,are modeled and validated.Impressively,configuration-dependent catalytic selectivity and the competition between one-side and bilateral adsorption can be unveiled by d-band center coordination paradigm analysis.Theoretical simulations suggest that the unsymmetrical charge distribution over the three Fe-Cu configurations could tune the adsorption strength compared with the counterparts FeN_(4)and CuN_(4).The present work provides a potential route for optimizing enzyme-like catalysis by designing the dual-or even triple-metal SAzymes,which demonstrates the large space to modulate the metal atomic configuration and interaction.展开更多
Carbon-based dual-metal sites catalysts(DMSCs)have emerged as a new frontier in the field of sustainable energy due to their unique coordination environments,electronic structure,the maximized atom utilization.The rea...Carbon-based dual-metal sites catalysts(DMSCs)have emerged as a new frontier in the field of sustainable energy due to their unique coordination environments,electronic structure,the maximized atom utilization.The reasonable utilization of carbonbased DMSCs provides new possibilities to achieve the outstanding catalytic performance,remarkable selectivity,recyclability in energy-related catalysis.Based on this,this review intends to summarize the recent breakthroughs in carbonbased DMSCs for the energy catalysis.Firstly,the definition and classifications of DMSCs are proposed,mainly dividing into three types(isolated dual-metal site pairs,binuclear homologous dual-metal sites pairs,binuclear heterologous dual-metal sites pairs).Subsequently,we discuss the potential of DMSCs targeting on energy conversion reactions,such as electrocatalytic hydrogen evolution reaction(HER),oxygen evolution reaction(OER),oxygen reduction reaction(ORR),CO_(2)reduction reaction(CO_(2)RR),N_(2) reduction reaction(NRR).Finally,we predict the remaining challenges and possible opportunities on the unique carbon-based DMSCs for energy applications in the future.展开更多
Dual-metal single-atom catalysts(DACs),featuring high atomic utilization efficiency,excellent selectivity,and stability originating from the atomically dispersed nature,have emerged as a new frontier in heterogeneous ...Dual-metal single-atom catalysts(DACs),featuring high atomic utilization efficiency,excellent selectivity,and stability originating from the atomically dispersed nature,have emerged as a new frontier in heterogeneous electrocatalysis due to the synergistic effect between diversified metal active sites in promoting their catalytic activity.In this review,the recent progress and development on the syntheses,characterizations,theoretical uniqueness,and applications for various catalytic reactions and devices(oxygen reduction reaction,oxygen evolution reaction,hydrogen evolution reaction,CO_(2) reduction reaction,N2 reduction reaction,proton exchange membrane fuel cells)are summarized and reviewed.Specifically,the synergistic effect between the two metal centers and electronic structures of catalysts is systematically discussed.Moreover,the future challenges and prospects in developing practical DACs are proposed as a possible direction for further investigation.展开更多
Two-dimensional(2D)transition metal chalcogenides(TMCs)are promising for nanoelectronics and energy applications.Among them,the emerging non-layered TMCs are unique due to their unsaturated dangling bonds on the surfa...Two-dimensional(2D)transition metal chalcogenides(TMCs)are promising for nanoelectronics and energy applications.Among them,the emerging non-layered TMCs are unique due to their unsaturated dangling bonds on the surface and strong intralayer and interlayer bonding.However,the synthesis of non-layered 2D TMCs is challenging and this has made it difficult to study their structures and properties at thin thickness limit.Here,we develop a universal dual-metal precursors method to grow non-layered TMCs in which a mixture of a metal and its chloride serves as the metal source.Taking hexagonal Fe_(1-x)S as an example,the thickness of the Fe_(1-x)S flakes is down to 3 nm with a lateral size of over 100 μm.Importantly,we find ordered cation Fe vacancies in Fe_(1-x)S,which is distinct from layered TMCs like MoS_(2) where anion vacancies are commonly observed.Low-temperature transport measurements and theoretical calculations show that 2D Fe_(1-x)S is a stable semiconductor with a narrow bandgap of60 meV.In addition to Fe_(1-x)S,the method is universal in growing various non-layered 2D TMCs containing ordered cation vacancies,including Fe_(1-x)Se,Co_(1-x)S,Cr_(1-x)S,and V_(1-x)S.This work paves the way to grow and exploit properties of non-layered materials at 2D thickness limit.展开更多
The discharge of the antibiotic wastewater has increased dramatically in our country with the development of medical science and wide application of antibiotic,resulting in serious harm to human body and ecological en...The discharge of the antibiotic wastewater has increased dramatically in our country with the development of medical science and wide application of antibiotic,resulting in serious harm to human body and ecological environment.In this work,ciprofloxacin(CIP)was selected as one of typical antibiotics and heterogeneous Fenton-like catalysts were prepared for the treatment of ciprofloxacin wastewater.The sodium alginate(SA)gel microspheres catalysts were prepared by polymerization method using double metal ions of Fe^(3+)and Mn^(2+)as cross-linking agents.Preparation conditions such as metal ions concentration,mass fraction of SA,polymerization temperature and dual-metal ions as crosslinking agent were optimized.Moreover,the effects of operating conditions such as initial concentration of CIP,pH value and catalyst dosage on CIP removal were studied.The kinetic equation showed that the effect of the initial concentration of CIP on the degradation rate was in line with second-order kinetics,and the effects of catalyst dosage and pH value on the degradation rate of CIP were in line with first-order kinetics.The SA gel microspheres catalysts prepared by dual-metal ions exhibited a high CIP removal and showed a good reusability after six recycles.The SA gel microspheres catalysts with an easy recovery performance provided an economical and efficient method for the removal of antibiotics in the future.展开更多
基金the support of the Sichuan Science and Technology Program(2023NSFC0098)the Science and Technology Development Fund from Macao SAR(FDCT)(0081/2019/AMJ,0154/2019/A3,006/2022/ALC,and 0111/2022/A2)+2 种基金the Shenzhen-Hong Kong-Macao Science and Technology Research Programme(Type C)(SGDX20210823103803017)the Multi-Year Research Grants(MYRG2022-00026-IAPME)from Research&Development Office at University of Macaothe Frontier Project of Chengdu Tianfu New Area Institute(SWUST,2022ZY017)。
文摘The development of highly active,selective,and stable electrocatalysts can facilitate the effective implementation of electrocatalytic CO_(2)conversion into fuels or chemicals for mitigating the energy crisis and climate problems.Therefore,it is necessary to achieve the goal through reasonable material design based on the actuality of the operational active site at the molecular scale.Inspired by the stimulating synergistic effect of coupled heteronuclear metal atoms,a novel Ni-Co atomic pairs configuration(denoted as NiN_(3)?CoN_(3)-NC)active site was theoretically screened out for improving electrochemical CO_(2)reduction reaction(CO_(2)RR).The structure of NiN_(3)?CoN_(3)-NC was finely regulated by adjusting Zn content in the precursors Zn/Co/Ni-zeolite imidazolate frameworks(Zn/Co/Ni-ZIFs)and pyrolysis temperature.The structural features of NiN_(3)?CoN_(3)-NC were systematically confirmed by aberration-corrected HAADF-STEM coupled with 3D atom-overlapping Gaussian-function fitting mapping,XAFS,and XRD.The results of theoretical calculations reveal that the synergistic effect of Ni-Co atomic pairs can effectively promote the*COOH intermediate formation and thus the overall CO_(2)RR kinetic was improved,and also restrained the competitive hydrogen evolution reaction.Due to the attributes of Ni-Co atomic pairs configuration,the developed NiN_(3)?CoN_(3)-NC with superior catalytic activity,selectivity,and durability,with a high turnover frequency of 2265 h^(-1)at-1.1 V(vs.RHE)and maximum Faradaic efficiency of 97.7%for CO production.This work demonstrates the great potential of DACs as highly efficient catalysts for CO_(2)RR,provides a useful strategy to design heteronuclear DACs,exploits the synergistic effect of multiple metal sites to facilitate complex CO_(2)RR catalytic reactions,and inspires more efforts to develop the potential of DACs in various fields.
基金supported by the National Key Research and Development Program of China(Nos.2021YFF1200700 and 2021YFF1200701)the National Natural Science Foundation of China(Nos.91859101,81971744,U1932107,82001952,11804248,82302361,and 82302381)+5 种基金Outstanding Youth Funds of Tianjin(No.2021FJ-0009)STI 2030-Major Projects(No.2022ZD0210200)National Natural Science Foundation of Tianjin(Nos.19JCZDJC34000,20JCYBJC00940,21JCYBJC00550,21JCZDJC00620,and 21JCYBJC00490)the Key Projects of Tianjin Natural Fund(No.21JCZDJC00490)the Innovation Foundation of Tianjin University,China Postdoctoral Science Foundation(No.2023M732601)CAS Interdisciplinary Innovation Team(No.JCTD-2020-08).
文摘After explorations in a diversity of single-atom nanozymes(SAzymes),developing dual-centered SAzymes becomes a promising approach for superior catalytic performance.But confusing mechanisms including atomic coordination,spatial configuration,and metal–metal atom interaction hinder the development and design of SAzymes.Herein,a dual-centered Fe-Cu-N_(x)SAzyme exhibits excellent peroxidase(POD)-and catalase(CAT)-like activities with d-band center(ε_(d))coordination of Fe and Cu in multiple reaction stages,which plays a critical role in the adsorption of H_(2)O_(2)molecule and H_(2)O and O_(2)release.Therefore,the dband center coordination,which can be represented byε_(d)(Fe)–ε_(d)(Cu)shifts,leads to the competition between one-side and bilateral adsorption,which determines the favorable reaction path with lower energy barriers.Based on experimental statistics,simulated formation energies,and reaction barriers,3 configurations,Fe-Cu-N6-I,Fe-Cu-N_(8)-II,and Fe-Cu-N_(8)-III,are modeled and validated.Impressively,configuration-dependent catalytic selectivity and the competition between one-side and bilateral adsorption can be unveiled by d-band center coordination paradigm analysis.Theoretical simulations suggest that the unsymmetrical charge distribution over the three Fe-Cu configurations could tune the adsorption strength compared with the counterparts FeN_(4)and CuN_(4).The present work provides a potential route for optimizing enzyme-like catalysis by designing the dual-or even triple-metal SAzymes,which demonstrates the large space to modulate the metal atomic configuration and interaction.
基金the National Natural Science Foundation of China(Nos.22201262 and 52201261)the Natural Science Foundation of Henan Province(No.222300420290)the China Postdoctoral Science Foundation(No.2021M702939).
文摘Carbon-based dual-metal sites catalysts(DMSCs)have emerged as a new frontier in the field of sustainable energy due to their unique coordination environments,electronic structure,the maximized atom utilization.The reasonable utilization of carbonbased DMSCs provides new possibilities to achieve the outstanding catalytic performance,remarkable selectivity,recyclability in energy-related catalysis.Based on this,this review intends to summarize the recent breakthroughs in carbonbased DMSCs for the energy catalysis.Firstly,the definition and classifications of DMSCs are proposed,mainly dividing into three types(isolated dual-metal site pairs,binuclear homologous dual-metal sites pairs,binuclear heterologous dual-metal sites pairs).Subsequently,we discuss the potential of DMSCs targeting on energy conversion reactions,such as electrocatalytic hydrogen evolution reaction(HER),oxygen evolution reaction(OER),oxygen reduction reaction(ORR),CO_(2)reduction reaction(CO_(2)RR),N_(2) reduction reaction(NRR).Finally,we predict the remaining challenges and possible opportunities on the unique carbon-based DMSCs for energy applications in the future.
基金National Natural Science Foundation of China,Grant/Award Number:52171199。
文摘Dual-metal single-atom catalysts(DACs),featuring high atomic utilization efficiency,excellent selectivity,and stability originating from the atomically dispersed nature,have emerged as a new frontier in heterogeneous electrocatalysis due to the synergistic effect between diversified metal active sites in promoting their catalytic activity.In this review,the recent progress and development on the syntheses,characterizations,theoretical uniqueness,and applications for various catalytic reactions and devices(oxygen reduction reaction,oxygen evolution reaction,hydrogen evolution reaction,CO_(2) reduction reaction,N2 reduction reaction,proton exchange membrane fuel cells)are summarized and reviewed.Specifically,the synergistic effect between the two metal centers and electronic structures of catalysts is systematically discussed.Moreover,the future challenges and prospects in developing practical DACs are proposed as a possible direction for further investigation.
基金supported by the National Science Fund for Distinguished Young Scholars(52125309)the National Natural Science Foundation of China(51991343,51920105002,51991340,52188101,and 11974156)+3 种基金Guangdong Innovative and Entrepreneurial Research Team Program(2017ZT07C341 and 2019ZT08C044)the Bureau of Industry and Information Technology of Shenzhen for the “2017 Graphene Manufacturing Innovation Center Project”(201901171523)Shenzhen Basic Research Project(JCYJ20200109144616617 and JCYJ20190809180605522)Shenzhen Science and Technology Program(KQTD20190929173815000 and 20200925161102001)。
文摘Two-dimensional(2D)transition metal chalcogenides(TMCs)are promising for nanoelectronics and energy applications.Among them,the emerging non-layered TMCs are unique due to their unsaturated dangling bonds on the surface and strong intralayer and interlayer bonding.However,the synthesis of non-layered 2D TMCs is challenging and this has made it difficult to study their structures and properties at thin thickness limit.Here,we develop a universal dual-metal precursors method to grow non-layered TMCs in which a mixture of a metal and its chloride serves as the metal source.Taking hexagonal Fe_(1-x)S as an example,the thickness of the Fe_(1-x)S flakes is down to 3 nm with a lateral size of over 100 μm.Importantly,we find ordered cation Fe vacancies in Fe_(1-x)S,which is distinct from layered TMCs like MoS_(2) where anion vacancies are commonly observed.Low-temperature transport measurements and theoretical calculations show that 2D Fe_(1-x)S is a stable semiconductor with a narrow bandgap of60 meV.In addition to Fe_(1-x)S,the method is universal in growing various non-layered 2D TMCs containing ordered cation vacancies,including Fe_(1-x)Se,Co_(1-x)S,Cr_(1-x)S,and V_(1-x)S.This work paves the way to grow and exploit properties of non-layered materials at 2D thickness limit.
基金supported by the National Natural Science Foundation of China(22125802 and 22108012)Natural Science Foundation of Beijing Municipality(2222017)Fundamental Research Funds for the Central Universities(BUCTRC-202109)。
文摘The discharge of the antibiotic wastewater has increased dramatically in our country with the development of medical science and wide application of antibiotic,resulting in serious harm to human body and ecological environment.In this work,ciprofloxacin(CIP)was selected as one of typical antibiotics and heterogeneous Fenton-like catalysts were prepared for the treatment of ciprofloxacin wastewater.The sodium alginate(SA)gel microspheres catalysts were prepared by polymerization method using double metal ions of Fe^(3+)and Mn^(2+)as cross-linking agents.Preparation conditions such as metal ions concentration,mass fraction of SA,polymerization temperature and dual-metal ions as crosslinking agent were optimized.Moreover,the effects of operating conditions such as initial concentration of CIP,pH value and catalyst dosage on CIP removal were studied.The kinetic equation showed that the effect of the initial concentration of CIP on the degradation rate was in line with second-order kinetics,and the effects of catalyst dosage and pH value on the degradation rate of CIP were in line with first-order kinetics.The SA gel microspheres catalysts prepared by dual-metal ions exhibited a high CIP removal and showed a good reusability after six recycles.The SA gel microspheres catalysts with an easy recovery performance provided an economical and efficient method for the removal of antibiotics in the future.