This paper presents a novel dual-mode step-up (boost) DC/DC converter. Pulse-frequency modulation (PFM) is used to improve the efficiency at light load. This converter can operate between pulse-width modulation (...This paper presents a novel dual-mode step-up (boost) DC/DC converter. Pulse-frequency modulation (PFM) is used to improve the efficiency at light load. This converter can operate between pulse-width modulation (PWM) and pulse-frequency modulation. The converter will operate in PFM mode at light load and in PWM mode at heavy load. The maximum conversion efficiency of this converter is 96%. The conversion efficiency is greatly improved when load current is below 100 mA. Additionally, a soft-start circuit and a variable-sawtooth frequency circuit are proposed in this paper. The former is used to avoid the large switching current at the start up of the converter and the latter is utilized to reduce the EMI of the converter.展开更多
The dual-mode stabilization scheme has been demonstrated as an efficient way to stabilize laser frequency.In this study,we propose a novel dual-mode stabilization scheme that employs a sizable Fabry-Pérot cavity ...The dual-mode stabilization scheme has been demonstrated as an efficient way to stabilize laser frequency.In this study,we propose a novel dual-mode stabilization scheme that employs a sizable Fabry-Pérot cavity instead of the microcavity used in previous studies and has enabled higher bandwidth for locking.The results demonstrate a 30-fold reduction in laser frequency drift,with frequency instability below 169 kHz for integration time exceeding 1 h and a minimum value of 33.8 kHz at 54 min.Further improvement could be achieved by optimizing the phase locking.This scheme has potential for use in precision spectroscopic measurement.展开更多
基金the National Science Council of Taiwan, China, under Grant No. NSC 95-2221-E-305010.
文摘This paper presents a novel dual-mode step-up (boost) DC/DC converter. Pulse-frequency modulation (PFM) is used to improve the efficiency at light load. This converter can operate between pulse-width modulation (PWM) and pulse-frequency modulation. The converter will operate in PFM mode at light load and in PWM mode at heavy load. The maximum conversion efficiency of this converter is 96%. The conversion efficiency is greatly improved when load current is below 100 mA. Additionally, a soft-start circuit and a variable-sawtooth frequency circuit are proposed in this paper. The former is used to avoid the large switching current at the start up of the converter and the latter is utilized to reduce the EMI of the converter.
基金supported by the National Key R&D Program of China(No.2022YFC3700329)the National Natural Science Foundation of China(Nos.61905134,61905136,and62175139)+1 种基金the Shanxi Province Science and Technology Activities for Returned Overseas Researcher(No.20220001)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.2019L0062)。
文摘The dual-mode stabilization scheme has been demonstrated as an efficient way to stabilize laser frequency.In this study,we propose a novel dual-mode stabilization scheme that employs a sizable Fabry-Pérot cavity instead of the microcavity used in previous studies and has enabled higher bandwidth for locking.The results demonstrate a 30-fold reduction in laser frequency drift,with frequency instability below 169 kHz for integration time exceeding 1 h and a minimum value of 33.8 kHz at 54 min.Further improvement could be achieved by optimizing the phase locking.This scheme has potential for use in precision spectroscopic measurement.