期刊文献+
共找到133,767篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of hafnium and molybdenum addition on inclusion characteristics in Co-based dual-phase high-entropy alloys
1
作者 Yong Wang Wei Wang +1 位作者 Joo Hyun Park Wangzhong Mu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1639-1650,共12页
Specific grades of high-entropy alloys(HEAs)can provide opportunities for optimizing properties toward high-temperature applications.In this work,the Co-based HEA with a chemical composition of Co_(47.5)Cr_(30)Fe_(7.5... Specific grades of high-entropy alloys(HEAs)can provide opportunities for optimizing properties toward high-temperature applications.In this work,the Co-based HEA with a chemical composition of Co_(47.5)Cr_(30)Fe_(7.5)Mn_(7.5)Ni_(7.5)(at%)was chosen.The refractory metallic elements hafnium(Hf)and molybdenum(Mo)were added in small amounts(1.5at%)because of their well-known positive effects on high-temperature properties.Inclusion characteristics were comprehensively explored by using a two-dimensional cross-sectional method and extracted by using a three-dimensional electrolytic extraction method.The results revealed that the addition of Hf can reduce Al_(2)O_(3)inclusions and lead to the formation of more stable Hf-rich inclusions as the main phase.Mo addition cannot influence the inclusion type but could influence the inclusion characteristics by affecting the physical parameters of the HEA melt.The calculated coagulation coefficient and collision rate of Al_(2)O_(3)inclusions were higher than those of HfO_(2)inclusions,but the inclusion amount played a larger role in the agglomeration behavior of HfO_(2)and Al_(2)O_(3)inclusions.The impurity level and active elements in HEAs were the crucial factors affecting inclusion formation. 展开更多
关键词 high-entropy alloy non-metallic inclusion AGGLOMERATION thermodynamics ALLOYING
下载PDF
Unveiling the rolling texture variations ofα-Mg phases in a dual-phase Mg-Li alloy
2
作者 Xiaoyan Li Luyao Jiang +5 位作者 Fei Guo Yanlong Ma Hang Yu Qiuyu Chen Haiding Liu Dingfei Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2557-2568,共12页
LZ91 Mg-Li alloy plates with three types of initial texture were rolled by 70%reduction at both room temperature and 200℃to explore the rolling texture formation ofα-Mg phase.The results showed that the rolling text... LZ91 Mg-Li alloy plates with three types of initial texture were rolled by 70%reduction at both room temperature and 200℃to explore the rolling texture formation ofα-Mg phase.The results showed that the rolling texture is largely affected by the initial texture.All the samples exhibited two main texture components as RD-split double peaks texture and TD-split double peaks texture after large strain rolling.The intensity of the two texture components was strongly influenced by the initial orientation and rolling temperature.Extension twinning altered the large-split non-basal orientation to a near basal one at low rolling strain.The basal orientation induced by twinning is unstable,which finally transmitted to the RD-split texture.The strong TD-split texture formed due to slip-induced orientation transition from its initial orientation.The competition between prismatic and basal slip determined the intensity and tilt angle of the TD-split texture.By increasing the rolling temperature,the TD-split texture component was enhanced in all three samples.Limitation of extension twinning behavior and the promotion of prismatic slip at elevated temperature are the main reasons for the difference in hot and cold rolling texture. 展开更多
关键词 Magnesium-lithium alloys Rolling texture Extension twinning Slip competition
下载PDF
Rolling texture development in a dual-phase Mg-Li alloy:The role of temperature 被引量:4
3
作者 Xiaoyan Li Fei Guo +5 位作者 Yanlong Ma Luyao Jiang Hongliang Lai Haiding Liu Dingfei Zhang Risheng Pei 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2980-2990,共11页
Dual-phase Mg-Li alloys sheets were rolled at four different temperatures ranging from liquid nitrogen to 300℃to explore effect of rolling temperature on texture and mechanical properties of the material.Crystal plas... Dual-phase Mg-Li alloys sheets were rolled at four different temperatures ranging from liquid nitrogen to 300℃to explore effect of rolling temperature on texture and mechanical properties of the material.Crystal plasticity simulation was utilized to illustrate the influence of slip activity on rolling texture development.The results show that the rolling texture is largely depended on deformation temperature.Unlike commercial Mg alloys,the critical resolved shear stress of basal slip inα-Mg phase of Mg-Li alloy decreased more significantly by increasing temperature compared to that of pyramidal<c+a>slip.Enhancement of basal slip by increasing temperature triggered a decrease of split angle of basal poles for the double-peak texture.Prismaticslip largely enhanced by increasing temperature upon 200℃,which induced a wider orientation spread along the transverse direction.For theβ-Li phase,the promotion of{110}<111>slip system at elevated temperature triggered the enhancement of{211}<110>and{111}<211>texture components.The cryo-rolled sample exhibited the highest strength compared to the others due to a strong hardening behavior at this temperature.A two-stage hardening behavior was observed in these as-rolled dual-phase alloys.Strain transition at phase boundaries could be the reason for appearance of this two-stage hardening. 展开更多
关键词 Magnesium-Lithium alloys dual-phase TEXTURE Slip behavior Mechanical properties
下载PDF
Layer thickness dependent plastic deformation mechanism in Ti/TiCu dual-phase nano-laminates 被引量:1
4
作者 安敏荣 雷岳峰 +5 位作者 宿梦嘉 刘兰亭 邓琼 宋海洋 尚玉 王晨 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期435-446,共12页
Crystalline/amorphous nanolaminate is an effective strategy to improve the mechanical properties of metallic materials,but the underlying deformation mechanism is still under the way of exploring.Here,the mechanical p... Crystalline/amorphous nanolaminate is an effective strategy to improve the mechanical properties of metallic materials,but the underlying deformation mechanism is still under the way of exploring.Here,the mechanical properties and plastic deformation mechanism of Ti/TiCu dual-phase nanolaminates(DPNLs)with different layer thicknesses are investigated using molecular dynamics simulations.The results indicate that the influence of the layer thickness on the plastic deformation mechanism in crystalline layer is negligible,while it affects the plastic deformation mechanism of amorphous layers distinctly.The crystallization of amorphous TiCu is exhibited in amorphous parts of the Ti/TiCu DPNLs,which is inversely proportional to the layer thickness.It is observed that the crystallization of the amorphous TiCu is a process driven by stress and heat.Young's moduli for the Ti/TiCu DPNLs are higher than those of composite material due to the amorphous/crystalline interfaces.Furthermore,the main plastic deformation mechanism in crystalline part:grain reorientation,transformation from hexagonal-close-packed-Ti to face-centered cubic-Ti and body-centered cubic-Ti,has also been displayed in the present work.The results may provide a guideline for design of high-performance Ti and its alloy. 展开更多
关键词 dual-phase nanolaminate molecular dynamics simulation deformation mechanism CRYSTALLIZATION
下载PDF
Tensile strength prediction of dual-phase Al0.6CoCrFeNi high-entropy alloys 被引量:5
5
作者 Min Zhang Jin-xiong Hou +5 位作者 Hui-jun Yang Ya-qin Tan Xue-jiao Wang Xiao-hui Shi Rui-peng Guo Jun-wei Qiao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第10期1341-1346,共6页
The evolution of the microstructure and tensile properties of dual-phase Al0.6CoCrFeNi high-entropy alloys(HEAs)subjected to cold rolling was investigated.The homogenized Al0.6CoCrFeNi alloys consisted of face-centere... The evolution of the microstructure and tensile properties of dual-phase Al0.6CoCrFeNi high-entropy alloys(HEAs)subjected to cold rolling was investigated.The homogenized Al0.6CoCrFeNi alloys consisted of face-centered-cubic and body-centered-cubic phases,presenting similar mechanical behavior as the as-cast state.The yield and tensile strengths of the alloys could be dramatically enhanced to^1205 MPa and^1318 MPa after 50%rolling reduction,respectively.A power-law relationship was discovered between the strain-hardening exponent and rolling reduction.The tensile strengths of this dual-phase HEA with different cold rolling treatments were predicted,mainly based on the Hollomon relationship,by the strain-hardening exponent,and showed good agreement with the experimental results. 展开更多
关键词 dual-phase high-entropy alloys cold rolling strain-hardening exponent tensile strength
下载PDF
Corrosion behavior of single-and poly-crystalline dual-phase TiAl–Ti3Al alloy in NaCl solution 被引量:4
6
作者 Dongpeng Wang Guang Chen +5 位作者 Anding Wang Yuxin Wang Yanxin Qiao Zhenguang Liu Zhixiang Qi Chain Tsuan Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第4期689-696,共8页
To clarify the correlation of single-crystalline structure with corrosion performance in high-strength TiAl alloys, electrochemical and surface characterization was performed by comparing Ti–45Al–8Nb dual-phase sing... To clarify the correlation of single-crystalline structure with corrosion performance in high-strength TiAl alloys, electrochemical and surface characterization was performed by comparing Ti–45Al–8Nb dual-phase single crystals with their polycrystalline counterparts in NaCl solution. Polarization curves show a lower corrosion rate and a higher pitting potential of ~280 mV for the dual-phase single crystals. Electrochemical impedance spectroscopy and potentiostatic polarization plots revealed a higher impedance of the charge transfer through the compact passive film. Surface composition analysis indicated a compact film with more content of Nb, as twice as that in the film on the polycrystals.Our results reflect that the dual-phase Ti–45Al–8Nb single crystals possess a higher corrosion resistance in NaCl solution, compared with their polycrystalline counterpart, arising from a more homogeneous microstructure and composition distribution. 展开更多
关键词 titanium alloy single crystal corrosion X-ray photoelectron spectroscopy
下载PDF
Influence of Al-Si additions on mechanical properties and corrosion resistance of Mg-8Li dual-phase alloys 被引量:4
7
作者 Zi-long Zhao Xue-gang Xing +2 位作者 Yi Luo Yi-de Wang Wei Liang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第4期426-429,共4页
Sheet samples of Mg-8Li,Mg-8Li-3Al,Mg-8Li-3AlSi and Mg-8Li-5AlSi alloys were obtained by hot rolling.Optical microscope,microhardness tester,nanoindentor,X-ray diffractometer and electrochemical analyzer were adopted ... Sheet samples of Mg-8Li,Mg-8Li-3Al,Mg-8Li-3AlSi and Mg-8Li-5AlSi alloys were obtained by hot rolling.Optical microscope,microhardness tester,nanoindentor,X-ray diffractometer and electrochemical analyzer were adopted to investigate the microstructures,micro-mechanical properties and corrosion resistance.Roller was preheated to 150°C before rolling process,and rolling reduction designed was about20% per pass with a total rolling reduction of 84%.The rolled plates were annealed at 200°C for 120 min.The tensile tests were performed at room temperature.Experimental results showed that both the strength and corrosion resistance of theα+βdual-phase of Mg-Li alloy were significantly improved with adding Al-Si elements.The strength enhancement was attributed to the solid solution of Al into theα-Mg matrix and into theβ-Li matrix as well as to the precipitation strengthening of Mg2 Si particles.Besides,the dendrite grains ofα-Mg transformed to equiaxed ones with addition of Al into alloy Mg-Li. 展开更多
关键词 Mg-8Li dual-phase alloy Mechanical property Corrosion resistance Hardness Rolling
原文传递
Accelerated design of high-performance Mg-Mn-based magnesium alloys based on novel bayesian optimization 被引量:2
8
作者 Xiaoxi Mi Lili Dai +4 位作者 Xuerui Jing Jia She Bjørn Holmedal Aitao Tang Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期750-766,共17页
Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing ... Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation. 展开更多
关键词 Mg-Mn-based alloys HIGH-PERFORMANCE Alloy design Machine learning Bayesian optimization
下载PDF
Relationship between the unique microstructures and behaviors of high-entropy alloys 被引量:2
9
作者 Yaqi Wu Peter KLiaw +5 位作者 Ruixuan Li Weiran Zhang Guihong Geng Xuehui Yan Guiqun Liu Yong Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1350-1363,共14页
High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness... High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance. 展开更多
关键词 high-entropy alloys unique microstructure special properties alloy design
下载PDF
Microstructure and damping properties of LPSO phase dominant Mg-Ni-Y and Mg-Zn-Ni-Y alloys 被引量:1
10
作者 Ruopeng Lu Kai Jiao +3 位作者 Nanting Li Hua Hou Jingfeng Wang Yuhong Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1131-1153,共23页
This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period ... This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys. 展开更多
关键词 Mg-Ni-Y alloys Mg-Zn-Ni-Y alloys LPSO phase Heat treatment MICROSTRUCTURE Damping properties.
下载PDF
Microstructures,corrosion behavior and mechanical properties of as-cast Mg-6Zn-2X(Fe/Cu/Ni)alloys for plugging tool applications 被引量:1
11
作者 Baosheng Liu Jiali Wei +4 位作者 Shaohua Zhang Yuezhong Zhang Pengpeng Wu Daqing Fang Guorui Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期697-711,共15页
Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess t... Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess the impacts of adding Cu and Ni,which result in finer grains and the formation of galvanic corrosion sites.Scanner electronic microscopy examination revealed that precipitated phases concentrated at grain boundaries,forming a semi-continuous network structure that facilitated corrosion penetration in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Pitting corrosion was observed in Mg-6Zn-2Fe,while galvanic corrosion was identified as the primary mechanism in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Among the tests,the Mg-6Zn-2Ni alloy exhibited the highest corrosion rate(approximately 932.9 mm/a)due to its significant potential difference.Mechanical testing showed that Mg-6Zn-2Ni alloy possessed suitable ultimate compressive strength,making it a potential candidate material for degradable fracturing balls,effectively addressing the challenges of balancing strength and degradation rate in fracturing applications. 展开更多
关键词 magnesium alloys microstructure micro-galvanic corrosion mechanical properties
下载PDF
Prediction of the thermal conductivity of Mg–Al–La alloys by CALPHAD method 被引量:1
12
作者 Hongxia Li Wenjun Xu +5 位作者 Yufei Zhang Shenglan Yang Lijun Zhang Bin Liu Qun Luo Qian Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期129-137,共9页
Mg-Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition.The accurate prediction of thermal conductivity is a prerequisite for designing Mg-Al alloys with high ther... Mg-Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition.The accurate prediction of thermal conductivity is a prerequisite for designing Mg-Al alloys with high thermal conductivity.Thus,databases for predicting temperature-and composition-dependent thermal conductivities must be established.In this study,Mg-Al-La alloys with different contents of Al2La,Al3La,and Al11La3phases and solid solubility of Al in the α-Mg phase were designed.The influence of the second phase(s) and Al solid solubility on thermal conductivity was investigated.Experimental results revealed a second phase transformation from Al_(2)La to Al_(3)La and further to Al_(11)La_(3)with the increasing Al content at a constant La amount.The degree of the negative effect of the second phase(s) on thermal diffusivity followed the sequence of Al2La>Al3La>Al_(11)La_(3).Compared with the second phase,an increase in the solid solubility of Al in α-Mg remarkably reduced the thermal conductivity.On the basis of the experimental data,a database of the reciprocal thermal diffusivity of the Mg-Al-La system was established by calculation of the phase diagram (CALPHAD)method.With a standard error of±1.2 W/(m·K),the predicted results were in good agreement with the experimental data.The established database can be used to design Mg-Al alloys with high thermal conductivity and provide valuable guidance for expanding their application prospects. 展开更多
关键词 magnesium alloy thermal conductivity thermodynamic calculations materials computation
下载PDF
Effect of icosahedral phase formation on the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li(in wt.%)based alloys 被引量:1
13
作者 Shuo Wang Daokui Xu +2 位作者 Dongliang Wang Zhiqiang Zhang Baojie Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期225-236,共12页
Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy wa... Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy was 47%,whilst the I_(SCC)of the Mg-8%Li-6%Zn-1.2%Y alloy was 68%.Surface,cross-sectional and fractography observations indicated that for the Mg-8%Li alloy,theα-Mg/β-Li interfaces acted as the preferential crack initiation sites and propagation paths during the SCC process.With regard to the Mg-8%Li-6%Zn-1.2%Y alloy,the crack initiation sites included the I-phase and the interfaces of I-phase/β-Li andα-Mg/β-Li,and the preferential propagation paths were the I-phase/β-Li andα-Mg/β-Li interfaces.Moreover,the SCC of the two alloys was concerned with hydrogen embrittlement(HE)mechanism. 展开更多
关键词 Magnesium-lithium alloy Stress corrosion cracking I-phase Fracture analysis
下载PDF
Microstructures and micromechanical behaviors of high -entropy alloys investigated by synchrotron X-ray and neutron diffraction techniques: A review 被引量:1
14
作者 Yubo Huang Ning Xu +3 位作者 Huaile Lu Yang Ren Shilei Li Yandong Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1333-1349,共17页
High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Exten... High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed. 展开更多
关键词 high-entropy alloys MICROSTRUCTURES micromechanical behaviors synchrotron X-ray diffraction neutron diffraction
下载PDF
Transformation of long-period stacking ordered structures in Mg-Gd-Y-Zn alloys upon synergistic characterization of first-principles calculation and experiment and its effects on mechanical properties 被引量:1
15
作者 Mingyu Li Guangzong Zhang +4 位作者 Siqi Yin Changfeng Wang Ying Fu Chenyang Gu Renguo Guan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1867-1879,共13页
Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process... Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process of long-period stacking ordered(LPSO)structure during solidification and heat treatment and its effect on the mechanical properties of experimental alloys are discussed.Results reveal that the stacking faults and 18R LPSO phases appear in the as-cast Mg-10Gd-4Y-1Zn-0.6Zr and Mg-10Gd-4Y-2Zn-0.6Zr alloys,respectively.After solution treatment,the stacking faults and 18R LPSO phase transform into 14H LPSO phase.The Enthalpies of formation and reaction energy of 14H and 18R LPSO are calculated based on first-principles.Results show that the alloying ability of 18R is stronger than that of 14H.The reaction energies show that the 14H LPSO phase is more stable than the 18R LPSO.The elastic properties of the 14H and 18R LPSO phases are also evaluated by first-principles calculations,and the results are in good agreement with the experimental results.The precipitation of LPSO phase improves the tensile strength,yield strength and elongation of the alloy.After solution treatment,the Mg-10Gd-4Y-2Zn-0.6Zr alloy has the best mechanical properties,and its ultimate tensile strength and yield strength are 278.7 MPa and 196.4 MPa,respectively.The elongation of Mg-10Gd-4Y-2Zn-0.6Zr reaches 15.1,which is higher than that of Mg-10Gd-4Y0.6Zr alloy.The improving mechanism of elastic modulus by the LPSO phases and the influence on the alloy mechanical properties are also analyzed. 展开更多
关键词 Mg-Gd-Y-Zn alloys Long-period stacking ordered First-principles calculations ENTHALPIES Mechanical properties
下载PDF
Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys
16
作者 Jia-Yi Wang Hai-Yang Song +2 位作者 Min-Rong An Qiong Deng and Yu-Long Li 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第6期379-387,共9页
The dual-phase amorphous/crystalline nanostructured model proves to be an effective method to improve the plasticity of Mg alloys.The purpose of this paper is to explore an approach to improving the ductility and stre... The dual-phase amorphous/crystalline nanostructured model proves to be an effective method to improve the plasticity of Mg alloys.The purpose of this paper is to explore an approach to improving the ductility and strength of Mg alloys at the same time.Here,the effect of amorphous phase strength,crystalline phase strength,and amorphous boundary(AB)spacing on the mechanical properties of dual-phase Mg alloys(DPMAs)under tensile loading are investigated by the molecular dynamics simulation method.The results confirm that the strength of DPMA can be significantly improved while its excellent plasticity is maintained by adjusting the strength of the amorphous phase or crystalline phase and optimizing the AB spacing.For the DPMA,when the amorphous phase(or crystalline phase)is strengthened to enhance its strength,the AB spacing should be increased(or reduced)to obtain superior plasticity at the same time.The results also indicate that the DPMA containing high strength amorphous phase exhibits three different deformation modes during plastic deformation with the increase of AB spacing.The research results will present a theoretical basis and early guidance for designing and developing the high-performance dual-phase hexagonal close-packed nanostructured metals. 展开更多
关键词 dual-phase Mg alloy metallic glass mechanical property molecular dynamics simulation
下载PDF
Review on synergistic damage effect of irradiation and corrosion on reactor structural alloys 被引量:1
17
作者 Hui Liu Guan-Hong Lei He-Fei Huang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第3期109-141,共33页
The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fou... The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fourth-generation fission nuclear energy structural materials used in pressurized water reactors and molten salt reactors.The competitive mechanisms of multiple influencing factors,such as the irradiation dose,corrosion type,and environmental temperature,are summarized in this paper.Conceptual approaches are proposed to alleviate the synergistic damage caused by irradiation and corrosion,thereby promoting in-depth research in the future and solving this key challenge for the structural materials used in reactors. 展开更多
关键词 Irradiation and corrosion Synergistic effect Austenitic stainless steels Nickel-based alloys Reactors
下载PDF
Comparison of electrochemical behaviors of Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe and Ti-6Al-4V titanium alloys in NaNO_(3) solution 被引量:1
18
作者 Jia Liu Shuanglu Duan +1 位作者 Xiaokang Yue Ningsong Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期750-763,共14页
The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an effici... The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an efficient and low-cost technology for manufacturing theβ-CEZ alloy.In ECM,the machining parameter selection and tool design are based on the electrochemical dissolution behavior of the materials.In this study,the electrochemical dissolution behaviors of theβ-CEZ and Ti-6Al-4V(TC4)alloys in NaNO3solution are discussed.The open circuit potential(OCP),Tafel polarization,potentiodynamic polarization,electrochemical impedance spectroscopy(EIS),and current efficiency curves of theβ-CEZ and TC4 alloys are analyzed.The results show that,compared to the TC4 alloy,the passivation film structure is denser and the charge transfer resistance in the dissolution process is greater for theβ-CEZ alloy.Moreover,the dissolved surface morphology of the two titanium-based alloys under different current densities are analyzed.Under low current densities,theβ-CEZ alloy surface comprises dissolution pits and dissolved products,while the TC4 alloy surface comprises a porous honeycomb structure.Under high current densities,the surface waviness of both the alloys improves and the TC4 alloy surface is flatter and smoother than theβ-CEZ alloy surface.Finally,the electrochemical dissolution models ofβ-CEZ and TC4 alloys are proposed. 展开更多
关键词 electrochemical machining dissolution behavior β-CEZ titanium alloy polarization curve current efficiency
下载PDF
New insights on the high-corrosion resistance of UHP Mg-Ge alloys tested in a simulated physiological environment 被引量:1
19
作者 Ting Liu Xingrui Chen +4 位作者 Jeffrey Venezuela Yuan Wang Zhiming Shi Wenyi Chen Matthew Dargusch 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1026-1044,共19页
UHP Mg-Ge alloys was recently found to provide excellent corrosion resistance.This paper provides new insights on the mechanism of improved corrosion resistance of UHP Mg-Ge alloys in Hanks’solution.The studied UHP M... UHP Mg-Ge alloys was recently found to provide excellent corrosion resistance.This paper provides new insights on the mechanism of improved corrosion resistance of UHP Mg-Ge alloys in Hanks’solution.The studied UHP Mg-0.5Ge and UHP Mg-1Ge alloys showed superior corrosion resistance compared to UHP Mg and WE43,with the Mg-1Ge exhibiting the best corrosion performance.The exceptional corrosion resistance of the UHP alloy is attributed to(i)Mg_(2)Ge’s ability to suppress cathodic kinetics,(ii)Ge’s capability to accelerate the formation of a highly passive layer,and the(iii)low amounts of corrosion-accelerating impurities. 展开更多
关键词 UHP Mg-Ge alloy Cathodic kinetics suppression Biodegradable metals In vitro corrosion Magnesium corrosion.
下载PDF
Microstructure and thermal properties of dissimilar M300–CuCr1Zr alloys by multi-material laser-based powder bed fusion 被引量:1
20
作者 Xiaoshuang Li Dmitry Sukhomlinov Zaiqing Que 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期118-128,共11页
Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-cond... Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-conductive CuCr1Zr with hard M300 tool steel.Two interface configurations of M300 on CuCr1Zr and CuCr1Zr on M300 were investigated. Ultra-fine grains form at the interface due to the low mutual solubility of Cu and steel. The material mixing zone size is dependent on the configurations and tunable in the range of0.1–0.3 mm by introducing a separate set of parameters for the interface layers. Microcracks and pores mainly occur in the transition zone.Regardless of these defects, the thermal diffusivity of bimetallic parts with 50vol% of CuCr1Zr significantly increases by 70%–150%compared to pure M300. The thermal diffusivity of CuCr1Zr and the hardness of M300 steel can be enhanced simultaneously by applying the aging heat treatment. 展开更多
关键词 multi-material additive manufacturing laser-based powder bed fusion thermal diffusivity dissimilar metals copper alloy
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部