A multiwavelength tunable ring-cavity erbium-doped fiber laser(EDFL)based on a Lyot filter was presented.For the proposed Lyot filter,a comb filter consisting of an EDF-polarization-maintaining fiber(EDF-PMF),a polari...A multiwavelength tunable ring-cavity erbium-doped fiber laser(EDFL)based on a Lyot filter was presented.For the proposed Lyot filter,a comb filter consisting of an EDF-polarization-maintaining fiber(EDF-PMF),a polarization controller(PC),and a circulator with four ports was used to suppress the mode competition.The light transmission direction was guaranteed by the circulator.For the proposed fiber laser,tunable single,dual,triple,quadruple,quintuple,sextuple,and septuple wavelengths were realized.A single-wavelength laser output with an optical signal-to-noise ratio(SNR)of up to30.56 dB was realized,and a tuning range of 1590.54 nm to 1599.54 nm was achieved by tuning the PC.The stability of the single,dual,triple,and quadruple-wavelength center power fluctuations was less than 0.05 dB,0.98 dB,5.07 dB,and7.71 dB respectively.When the laser was operated in the multiwavelength condition,the SNR was more than 20.97 dB.The proposed erbium-doped fiber laser is suitable for fiber-sensing system applications.展开更多
In this paper,the chaotic behaviors in an erbium-doped fiber(EDF) single-ring laser(EDFSRL) are investigated experimentally by using the loss modulation method.An electro-optic modulator(EOM) made of LiNbO 3 cry...In this paper,the chaotic behaviors in an erbium-doped fiber(EDF) single-ring laser(EDFSRL) are investigated experimentally by using the loss modulation method.An electro-optic modulator(EOM) made of LiNbO 3 crystal is added to the system.Thus,by changing the modulation voltage and the modulation frequency of the EOM,the freedom of the EDFSRL system is increased.The chaotic characteristics of the system are studied by observing the time series and the power spectra.The experimental results indicate that the erbium-doped fiber single-ring laser system can enter into chaos states through period-doubling bifurcation and intermittency routes.展开更多
We demonstrate an ultrafast fiber laser based on transition metal dichalcogenide materials which are tungsten disulfide (WS<sub>2</sub>) and molybdenum disulfide (MoS<sub>2</sub>) as saturable ...We demonstrate an ultrafast fiber laser based on transition metal dichalcogenide materials which are tungsten disulfide (WS<sub>2</sub>) and molybdenum disulfide (MoS<sub>2</sub>) as saturable absorber (SA). These materials are fabricated via a simple drop-casting method. By employing WS<sub>2</sub>, we obtain a stable harmonic mode-locking at the threshold pump power of 184 mW, and the generated soliton pulse has 3.48 MHz of repetition rate. At the maximum pump power of 250 mW, we also obtain a small value of pulse duration, 2.43 ps with signal-to-noise ratio (SNR) of 57 dB. For MoS<sub>2</sub> SA, the pulse is generated at 105 mW pump power with repetition rate of 1.16 MHz. However, the pulse duration cannot be detected by the autocorrelator device as the pulse duration recorded is 468 ns, with the SNR value of 35 dB.展开更多
We present a stable linear-cavity single longitudinal mode (SLM) erbium-doped silica fiber laser. It consists of four fiber Bragg gratings (FBGs) directly written in a section of photosensitive erbium-doped fiber ...We present a stable linear-cavity single longitudinal mode (SLM) erbium-doped silica fiber laser. It consists of four fiber Bragg gratings (FBGs) directly written in a section of photosensitive erbium-doped fiber (EDF) to form an asymmetric three-cavity structure. The stable SLM operation at a wavelength of 1545.112 nm with a 3-dB bandwidth of 0.012 nm and an optical signal-to-noise ratio (OSNR) of about 60 dB is verified experimentally. Under laboratory conditions, the performance of a power fluctuation of less than 0.05 dB observed from the power meter for 6 h and a wavelength variation of less than 0.01 nm obtained from the optical spectrum analyzer (OSA) for about 1.5 h are demonstrated. The gain fiber length is no longer limited to only several centimeters for SLM operation because of the excellent mode-selecting ability of the asymmetric three-cavity structure. The proposed scheme provides a simple and cost-effective approach to realizing a stable SLM fiber laser.展开更多
A mode-locked erbium doped fiber laser(EDFL) is demonstrated using the vanadium oxide(V2O5) material as a saturable absorber(SA). The V2O5 based SA is hosted into poly ethylene oxide film and attached on fiber f...A mode-locked erbium doped fiber laser(EDFL) is demonstrated using the vanadium oxide(V2O5) material as a saturable absorber(SA). The V2O5 based SA is hosted into poly ethylene oxide film and attached on fiber ferule in the laser cavity. It shows 7% modulation depth with 71 MW/cm2 saturation intensity. By incorporating the SA inside the EDFL cavity with managed intra-cavity dispersion, ultrashort soliton pulses are successfully generated with a full width at half maximum of 3.14 ps. The laser operated at central wavelength of 1559.25 nm and repetition frequency of 1 MHz.展开更多
A stable Q-switched erbium doped fiber laser emitting at 1558 nm is demonstrated using a cadmium selenide(CdSe) material coated onto a side-polished D-shape fiber as the saturable absorber(SA). By elevating the in...A stable Q-switched erbium doped fiber laser emitting at 1558 nm is demonstrated using a cadmium selenide(CdSe) material coated onto a side-polished D-shape fiber as the saturable absorber(SA). By elevating the input pump power from the threshold of 91 mW to the maximum available power of 136 mW, a pulse train with a maximum repetition rate of 57.44 kHz, minimum pulse width of 3.76 us, maximum average output power of7.99 mW, maximum pulse energy of 0.1391 uJ, and maximum peak power of 36.99 mW are obtained. The signalto-noise ratio of the spectrum is measured to be around 75 dB. This CdSe based SA is simple, robust, and reliable,and thus suitable for making a portable pulse laser source.展开更多
We propose and demonstrate a Q-switched erbium-doped fiber laser (EDFL) using an erbium-doped zirconia-alumina silica glass-based fiber (Zr-EDF) as a saturable absorber. As a 16-cm-long Zr-EDF is incorporated into...We propose and demonstrate a Q-switched erbium-doped fiber laser (EDFL) using an erbium-doped zirconia-alumina silica glass-based fiber (Zr-EDF) as a saturable absorber. As a 16-cm-long Zr-EDF is incorporated into a ring EDFL cavity, a stable Q-switching pulse train operating at 1565?nm wavelength is successfully obtained. The repetition rate is tunable from 33.97?kHz to 71.23?kHz by increasing the pump power from the threshold of 26?mW to the maximum of 74?mW. The highest pulse energy of 26.67?nJ is obtained at the maximum pump power.展开更多
We demonstrate a stable Q-switched mode-locked erbium-doped fiber laser (EDFL) operating in dark regime based on the nonlinear polarization rotation technique. The EDFL produces a pulse train where the Q-switching e...We demonstrate a stable Q-switched mode-locked erbium-doped fiber laser (EDFL) operating in dark regime based on the nonlinear polarization rotation technique. The EDFL produces a pulse train where the Q-switching envelope is formed by multiple dark pulses. The repetition rate of the Q-switched envelope can be increased from 0.96kHz to 3.26kHz, whereas the pulse width reduces from 211 #s to 86#s. The highest pulse of 479nJ is obtained at the pump power of 55 mW. It is also observed that the dark pulses inside the Q-switching envelope consist of two parts: square and trailing dark pulses. The shortest pulse width of the dark square pulse is obtained at 40.5μs when the pump power is fixed at 145mW. The repetition rate of trailing dark pulses can be increased from 27.62kHz to 50kHz as the pump power increases from 55mW to 145mW.展开更多
A harmonic dark pulse generation in an erbium-doped fiber laser is demonstrated based on a figure-of-eight configuration. It is found that the harmonic dark pulse can be shifted from the fundamental to the 5th order h...A harmonic dark pulse generation in an erbium-doped fiber laser is demonstrated based on a figure-of-eight configuration. It is found that the harmonic dark pulse can be shifted from the fundamental to the 5th order harmonic by increasing the pump power with an appropriate polarization controller orientation. The fundamental repetition rate of 2O kHz is obtained at the pump power of 29 m W. The highest pulse energy of 42.6 n3 is obtained at the fundamental repetition rate. The operating frequency of the dark pulse trains shifts to 2nd, 3rd, 4th and 5th harmonic as the pump powers are increased to 34mW, 50mW, 59mW and 137mW, respectively.展开更多
We demonstrate a Q-switched erbium-doped fiber laser (EDFL) using a newly developed zinc oxide- (ZnO) based saturable absorber (SA). The SA is fabricated by embedding a prepared ZnO powder into a poly(vinyl alc...We demonstrate a Q-switched erbium-doped fiber laser (EDFL) using a newly developed zinc oxide- (ZnO) based saturable absorber (SA). The SA is fabricated by embedding a prepared ZnO powder into a poly(vinyl alcohol) film. A small piece of the film is then sandwiched between two fiber ferrules and is incorporated in an EDFL cavity for generating a stable Q-switching pulse train. The EDFL operates at 1560.4nm with a pump power threshold of 11.8mW, a pulse repetition rate tunable from 22.79 to 61.43kHz, and the smallest pulse width of 7.00 μs. The Q-switching pulse shows no spectral modulation with a peak-to-pedestal ratio of 62 dB indicating the high stability of the laser. These results show that the ZnO powder has a great potential to be used for pulsed laser applications.展开更多
We demonstrate the generation of dark and bright solitons with our homemade zirconia-based erbium-doped fiber and graphene oxide(GO) saturable absorber in anomalous dispersion region.The GO is fabricated using an ab...We demonstrate the generation of dark and bright solitons with our homemade zirconia-based erbium-doped fiber and graphene oxide(GO) saturable absorber in anomalous dispersion region.The GO is fabricated using an abridged Hummer's method,which is combined with polyethylene oxide to produce a composite film.The film is sandwiched between two optical ferrules and embedded in the laser cavity to enhance its birefringence and nonlinearity.The self-starting bright soliton is easily generated at pump power of 78 mW with the whole length cavity of 14.7 m.The laser produces the bright pulse train with repetition rate,pulse width,pulse energy and central wavelength being 13.9 MHz,0.6 ps,2.74 p J and 1577.46 nm,respectively.Then,by adding the 10 m of single mode fiber into the laser cavity,dark soliton pulse is produced.For the formation of dark pulse train,the measured repetition rate,pulse width,pulse energy and central wavelength are 8.3 MHz,20 ns and 4.98 p J and1596.82 nm,respectively.Both pulses operate in the anomalous region.展开更多
GeSe nanosheets were prepared by ultrasonic-assisted liquid<span><span><span style="font-family:;" "=""> </span></span></span><span><span><sp...GeSe nanosheets were prepared by ultrasonic-assisted liquid<span><span><span style="font-family:;" "=""> </span></span></span><span><span><span><span style="font-family:Verdana;">phase exfoliation (LPE), and the nonlinear saturated absorption performance was experimentally studied. The modulation depth and saturation intensity of the prepared GeSe saturable absorber (SA) were 15% and 1.44 MW/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">, respectively. Us</span><span style="font-family:Verdana;">ing the saturated absorption characteristics of GeSe SA, a passively Q-switched </span><span style="font-family:Verdana;">erbium-doped fiber laser was systematically demonstrated. As the pump</span><span style="font-family:Verdana;"> power increases, the pulse repetition frequency increases from 22.8 kHz to 77.59 </span><span style="font-family:Verdana;">kHz. The shortest pulse duration is 1.51 μs, and the corresponding pulse</span><span style="font-family:Verdana;"> energy is 46.14 nJ. Experimental results show that GeSe nanosheets can be used as high-efficiency SA in fiber lasers. Our results will provide a useful reference for demonstrating pulsed fiber lasers based on GeSe equipment.</span></span></span></span>展开更多
<span style="font-family:Verdana;">T</span><span style="font-family:Verdana;font-size:12px;">he T</span><span style="font-family:Verdana;font-size:12px;">i&l...<span style="font-family:Verdana;">T</span><span style="font-family:Verdana;font-size:12px;">he T</span><span style="font-family:Verdana;font-size:12px;">i</span><span style="font-family:Verdana;font-size:12px;">Se</span><sub><span style="font-family:Verdana;font-size:12px;">2</span></sub><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">nanosheets</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">were</span><span style="font-family:Verdana;font-size:12px;"> prepared by means of ultrasound-assisted liquid </span><span style="font-family:Verdana;font-size:12px;">phase exfoliation (LPE)</span><span style="font-family:Verdana;font-size:12px;"> and the </span><span style="font-family:Verdana;font-size:12px;">nonlinear </span><span style="font-family:Verdana;font-size:12px;">saturable absorption</span><span style="font-family:Verdana;font-size:12px;"> properties</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">were experimentally</span><span style="font-family:Verdana;font-size:12px;"> investigated. The modulation depth, saturation intensity and nonsaturable absorbance</span><span style="font-family:Verdana;font-size:12px;"> of the prepared </span><span style="font-family:Verdana;font-size:12px;">1T-TiSe</span><sub><span style="font-family:Verdana;font-size:12px;">2</span></sub><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">SA </span><span style="font-family:Verdana;font-size:12px;">were</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">1</span><span style="font-family:Verdana;font-size:12px;">5.7</span><span style="font-family:Verdana;font-size:12px;">%,</span><span style="font-family:Verdana;font-size:12px;"> 1.28 M</span><span style="font-family:Verdana;font-size:12px;">W/cm</span><sup><span style="font-family:Verdana;font-size:12px;vertical-align:super;">2</span></sup><span style="font-family:Verdana;font-size:12px;"> and 8.</span><span style="font-family:Verdana;font-size:12px;">2</span><span style="font-family:Verdana;font-size:12px;">%, </span><span style="font-family:Verdana;font-size:12px;">respectively</span><span style="font-family:Verdana;font-size:12px;">. Taking advantage of the saturable absorption properties of </span><span style="font-family:Verdana;font-size:12px;">T</span><span style="font-family:Verdana;font-size:12px;">i</span><span style="font-family:Verdana;font-size:12px;">Se</span><sub><span style="font-family:Verdana;font-size:12px;">2</span></sub><span style="font-family:Verdana;font-size:12px;">-based SA, a passively Q-switched erbium-doped fiber (EDF) laser was</span><span style="font-family:Verdana;font-size:12px;"> systematically demonstrated</span><span style="font-family:Verdana;font-size:12px;">. The pulse repetition rates varied from 24.50 kHz up to 73.79 kHz with the increasing pump power. The obtained shortest pulse width was 1.31 </span><span style="font-family:Verdana;font-size:12px;">μ</span><span style="font-family:Verdana;font-size:12px;">s with pulse energy of 79.28 nJ. The </span><span style="font-family:Verdana;font-size:12px;">system presented merits of low-cost SA preparation, system compactness,</span><span style="font-family:Verdana;font-size:12px;"> superb stability and high competition.</span>展开更多
We demonstrate a stable narrow linewidth single-frequency erbium-doped fiber laser(EDFL)operating at 1.6μm.A Fabry–Perot fiber Bragg grating and two cascaded subrings are incorporated in the main ring cavity to achi...We demonstrate a stable narrow linewidth single-frequency erbium-doped fiber laser(EDFL)operating at 1.6μm.A Fabry–Perot fiber Bragg grating and two cascaded subrings are incorporated in the main ring cavity to achieve singlefrequency operation.The experimentally measured optical signal-to-noise ratio is greater than 73 dB.Furthermore,the linewidth of the EDFL is measured to be about 480 Hz by the self-built short-delayed self-heterodyne interferometry device.The laser shows superior stability,with no mode-hopping during the 60-min observation period.The proposed EDFL provides a new experimental idea for realizing a single-frequency fiber laser in the L-band.展开更多
Tungsten disulfide(WS_2) is a type of anisotropic-layered compound and has broadband saturable absorption features as saturable absorbers(SAs). With WS_2-based SAs, dark solitons in erbium-doped fiber(EDF) lasers are ...Tungsten disulfide(WS_2) is a type of anisotropic-layered compound and has broadband saturable absorption features as saturable absorbers(SAs). With WS_2-based SAs, dark solitons in erbium-doped fiber(EDF) lasers are first obtained. For the generated dark solitons, the center wavelength is measured to be 1530 nm, and the repetition rate is about 116.5 MHz. A series of optical spectra is exhibited. The electrical signal-to-noise ratio is better than 94 d B.Results in this paper demonstrate that WS_2-based SAs are the promising SAs for generating dark solitons in EDF lasers.展开更多
We report an erbium-doped fiber laser passively Q-switched by a few-layer molybdenum disulfide(MoS2) saturable absorber(SA).The few-layer MoS2 is grown by the chemical vapor deposition method and transferred onto ...We report an erbium-doped fiber laser passively Q-switched by a few-layer molybdenum disulfide(MoS2) saturable absorber(SA).The few-layer MoS2 is grown by the chemical vapor deposition method and transferred onto the end-face of a fiber connector to form a fiber-compatible MoS2 SA.The laser cavity is constructed by using a three-port optical circulator and a fiber Bragg grating(FBG) as the two end-mirrors.Stable Q-switched pulses are obtained with a pulse duration of 1.92 μs at 1560.5 nm.By increasing the pump power from 42 to 204 mW,the pulse repetition rate can be widely changed from 28.6 to 114.8 kHz.Passive Q-switching operations with discrete lasing wavelengths ranging from 1529.8 to 1570.1 nm are also investigated by using FBGs with different central wavelengths.This work demonstrates that few-layer MoS2 can serve as a promising SA for wideband-tunable Q-switching laser operation.展开更多
We reported on the generation of the dual-wavelength rectangular pulse in an erbium-doped fiber laser(EDFL)with a topological insulator saturable absorber.The rectangular pulse could be stably initiated with pulse wid...We reported on the generation of the dual-wavelength rectangular pulse in an erbium-doped fiber laser(EDFL)with a topological insulator saturable absorber.The rectangular pulse could be stably initiated with pulse width from 13.62 to 25.16 ns and fundamental repetition rate of 3.54 MHz by properly adjusting the pump power and the polarization state.In addition,we verified that the pulse shape of the dual-wavelength rectangular pulse can be affected by the total net cavity dispersion in the fiber laser.Furthermore,by properly rotating the polarization controllers,the harmonic mode-locking operation of the dual-wavelength rectangular pulse was also obtained.The dual-wavelength rectangular pulse EDFL would benefit some potential applications,such as spectroscopy,biomedicine,and sensing research.展开更多
We demonstrate a multi-wavelength erbium-doped fiber laser (EDFL) using erbium gain and four-wave mixing (FWM) effect in a piece of erbium-doped fiber (EDF) with high erbium ion concentration. The EDF has a pump...We demonstrate a multi-wavelength erbium-doped fiber laser (EDFL) using erbium gain and four-wave mixing (FWM) effect in a piece of erbium-doped fiber (EDF) with high erbium ion concentration. The EDF has a pump absorption rate of 24.6 dB/m at 979 nm and is bi-directionally pumped by 980-nm laser diodes. FWM effect redistributes the energy of different oscillating lines and causes multi-wavelength operation. The laser generates more than 22 lines of optical comb with a line spacing of approximately 0.10 nm at the 1569-nm region using only 1.5-m-long EDF.展开更多
Stable Q-switched and mode-locked erbium-doped fiber lasers(EDFLs)are first demonstrated by using the novel layered palladium disulfide(PdS2),a new member of group 10 transition metal dichalcogenides(TMDs)-based satur...Stable Q-switched and mode-locked erbium-doped fiber lasers(EDFLs)are first demonstrated by using the novel layered palladium disulfide(PdS2),a new member of group 10 transition metal dichalcogenides(TMDs)-based saturable absorbers(SAs).Self-started Q-switched operation at 1567 nm was achieved with a threshold pump power of 50.6 mW.The modulation ranges of pulse duration and repetition rate were characterized as 12.6-4.5μs and 17.2-26.0 kHz,respectively.Meanwhile,a mode-locked EDFL was also obtained with a pump power threshold of 106.4 mW.The achieved pulse duration is 803 fs,corresponding to a center wavelength of 1565.8 nm and4.48 nm 3 dB bandwidth.To the best of our knowledge,the achieved pulse duration of the mode-locked EDFL in this work is the narrowest compared with all other group 10 TMD SA-based lasers.展开更多
We demonstrate the generation of noise-like pulses(NLPs)and soliton rains in a graphene saturable absorber modelocked erbium-doped fiber laser.Typical NLPs are obtained at a proper pump power and in a cavity polarizat...We demonstrate the generation of noise-like pulses(NLPs)and soliton rains in a graphene saturable absorber modelocked erbium-doped fiber laser.Typical NLPs are obtained at a proper pump power and in a cavity polarization state.The soliton rain operation with multiple solitons can be achieved by finely adjusting the cavity polarization state.In addition,distinctive multi-soliton interactions are observed and investigated,including the fundamental mode-locking and multiple pulses.The experimental results can help further understand nonlinear pulse dynamics in ultrafast optics.展开更多
基金Beijing Great Wall Scholars Program(Grant No.CIT&TCD20190323)Beijing Youth Talent Support Program(Grant No.Z2019042)the National Natural Science Foundation of China(Grant No.61875237).
文摘A multiwavelength tunable ring-cavity erbium-doped fiber laser(EDFL)based on a Lyot filter was presented.For the proposed Lyot filter,a comb filter consisting of an EDF-polarization-maintaining fiber(EDF-PMF),a polarization controller(PC),and a circulator with four ports was used to suppress the mode competition.The light transmission direction was guaranteed by the circulator.For the proposed fiber laser,tunable single,dual,triple,quadruple,quintuple,sextuple,and septuple wavelengths were realized.A single-wavelength laser output with an optical signal-to-noise ratio(SNR)of up to30.56 dB was realized,and a tuning range of 1590.54 nm to 1599.54 nm was achieved by tuning the PC.The stability of the single,dual,triple,and quadruple-wavelength center power fluctuations was less than 0.05 dB,0.98 dB,5.07 dB,and7.71 dB respectively.When the laser was operated in the multiwavelength condition,the SNR was more than 20.97 dB.The proposed erbium-doped fiber laser is suitable for fiber-sensing system applications.
基金Project supported by the Science and Technology Development Program of Jilin Province,China (Grant No. 20090309)
文摘In this paper,the chaotic behaviors in an erbium-doped fiber(EDF) single-ring laser(EDFSRL) are investigated experimentally by using the loss modulation method.An electro-optic modulator(EOM) made of LiNbO 3 crystal is added to the system.Thus,by changing the modulation voltage and the modulation frequency of the EOM,the freedom of the EDFSRL system is increased.The chaotic characteristics of the system are studied by observing the time series and the power spectra.The experimental results indicate that the erbium-doped fiber single-ring laser system can enter into chaos states through period-doubling bifurcation and intermittency routes.
基金Supported by the University of Malaya under Grant No PG173-2015B
文摘We demonstrate an ultrafast fiber laser based on transition metal dichalcogenide materials which are tungsten disulfide (WS<sub>2</sub>) and molybdenum disulfide (MoS<sub>2</sub>) as saturable absorber (SA). These materials are fabricated via a simple drop-casting method. By employing WS<sub>2</sub>, we obtain a stable harmonic mode-locking at the threshold pump power of 184 mW, and the generated soliton pulse has 3.48 MHz of repetition rate. At the maximum pump power of 250 mW, we also obtain a small value of pulse duration, 2.43 ps with signal-to-noise ratio (SNR) of 57 dB. For MoS<sub>2</sub> SA, the pulse is generated at 105 mW pump power with repetition rate of 1.16 MHz. However, the pulse duration cannot be detected by the autocorrelator device as the pulse duration recorded is 468 ns, with the SNR value of 35 dB.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61077069 and 61107094)the Innovation Foundation for Excellent Doctoral Candidates of Beijing Jiaotong University, China (Grant No. 2011YJS202)
文摘We present a stable linear-cavity single longitudinal mode (SLM) erbium-doped silica fiber laser. It consists of four fiber Bragg gratings (FBGs) directly written in a section of photosensitive erbium-doped fiber (EDF) to form an asymmetric three-cavity structure. The stable SLM operation at a wavelength of 1545.112 nm with a 3-dB bandwidth of 0.012 nm and an optical signal-to-noise ratio (OSNR) of about 60 dB is verified experimentally. Under laboratory conditions, the performance of a power fluctuation of less than 0.05 dB observed from the power meter for 6 h and a wavelength variation of less than 0.01 nm obtained from the optical spectrum analyzer (OSA) for about 1.5 h are demonstrated. The gain fiber length is no longer limited to only several centimeters for SLM operation because of the excellent mode-selecting ability of the asymmetric three-cavity structure. The proposed scheme provides a simple and cost-effective approach to realizing a stable SLM fiber laser.
文摘A mode-locked erbium doped fiber laser(EDFL) is demonstrated using the vanadium oxide(V2O5) material as a saturable absorber(SA). The V2O5 based SA is hosted into poly ethylene oxide film and attached on fiber ferule in the laser cavity. It shows 7% modulation depth with 71 MW/cm2 saturation intensity. By incorporating the SA inside the EDFL cavity with managed intra-cavity dispersion, ultrashort soliton pulses are successfully generated with a full width at half maximum of 3.14 ps. The laser operated at central wavelength of 1559.25 nm and repetition frequency of 1 MHz.
文摘A stable Q-switched erbium doped fiber laser emitting at 1558 nm is demonstrated using a cadmium selenide(CdSe) material coated onto a side-polished D-shape fiber as the saturable absorber(SA). By elevating the input pump power from the threshold of 91 mW to the maximum available power of 136 mW, a pulse train with a maximum repetition rate of 57.44 kHz, minimum pulse width of 3.76 us, maximum average output power of7.99 mW, maximum pulse energy of 0.1391 uJ, and maximum peak power of 36.99 mW are obtained. The signalto-noise ratio of the spectrum is measured to be around 75 dB. This CdSe based SA is simple, robust, and reliable,and thus suitable for making a portable pulse laser source.
基金Supported by the Postgraduate Research of Malaysia under Grant No PG098-2014Bthe CSIR of Government of India
文摘We propose and demonstrate a Q-switched erbium-doped fiber laser (EDFL) using an erbium-doped zirconia-alumina silica glass-based fiber (Zr-EDF) as a saturable absorber. As a 16-cm-long Zr-EDF is incorporated into a ring EDFL cavity, a stable Q-switching pulse train operating at 1565?nm wavelength is successfully obtained. The repetition rate is tunable from 33.97?kHz to 71.23?kHz by increasing the pump power from the threshold of 26?mW to the maximum of 74?mW. The highest pulse energy of 26.67?nJ is obtained at the maximum pump power.
基金Supported by the Fund from University of Malaya under Grant No RU007/2015LRGS(2015)/NGOD/UM/KPTMOSTI under Grant No SF014-2014
文摘We demonstrate a stable Q-switched mode-locked erbium-doped fiber laser (EDFL) operating in dark regime based on the nonlinear polarization rotation technique. The EDFL produces a pulse train where the Q-switching envelope is formed by multiple dark pulses. The repetition rate of the Q-switched envelope can be increased from 0.96kHz to 3.26kHz, whereas the pulse width reduces from 211 #s to 86#s. The highest pulse of 479nJ is obtained at the pump power of 55 mW. It is also observed that the dark pulses inside the Q-switching envelope consist of two parts: square and trailing dark pulses. The shortest pulse width of the dark square pulse is obtained at 40.5μs when the pump power is fixed at 145mW. The repetition rate of trailing dark pulses can be increased from 27.62kHz to 50kHz as the pump power increases from 55mW to 145mW.
文摘A harmonic dark pulse generation in an erbium-doped fiber laser is demonstrated based on a figure-of-eight configuration. It is found that the harmonic dark pulse can be shifted from the fundamental to the 5th order harmonic by increasing the pump power with an appropriate polarization controller orientation. The fundamental repetition rate of 2O kHz is obtained at the pump power of 29 m W. The highest pulse energy of 42.6 n3 is obtained at the fundamental repetition rate. The operating frequency of the dark pulse trains shifts to 2nd, 3rd, 4th and 5th harmonic as the pump powers are increased to 34mW, 50mW, 59mW and 137mW, respectively.
基金Supported by the University of Malaya under Grant No PG173-2015B
文摘We demonstrate a Q-switched erbium-doped fiber laser (EDFL) using a newly developed zinc oxide- (ZnO) based saturable absorber (SA). The SA is fabricated by embedding a prepared ZnO powder into a poly(vinyl alcohol) film. A small piece of the film is then sandwiched between two fiber ferrules and is incorporated in an EDFL cavity for generating a stable Q-switching pulse train. The EDFL operates at 1560.4nm with a pump power threshold of 11.8mW, a pulse repetition rate tunable from 22.79 to 61.43kHz, and the smallest pulse width of 7.00 μs. The Q-switching pulse shows no spectral modulation with a peak-to-pedestal ratio of 62 dB indicating the high stability of the laser. These results show that the ZnO powder has a great potential to be used for pulsed laser applications.
文摘We demonstrate the generation of dark and bright solitons with our homemade zirconia-based erbium-doped fiber and graphene oxide(GO) saturable absorber in anomalous dispersion region.The GO is fabricated using an abridged Hummer's method,which is combined with polyethylene oxide to produce a composite film.The film is sandwiched between two optical ferrules and embedded in the laser cavity to enhance its birefringence and nonlinearity.The self-starting bright soliton is easily generated at pump power of 78 mW with the whole length cavity of 14.7 m.The laser produces the bright pulse train with repetition rate,pulse width,pulse energy and central wavelength being 13.9 MHz,0.6 ps,2.74 p J and 1577.46 nm,respectively.Then,by adding the 10 m of single mode fiber into the laser cavity,dark soliton pulse is produced.For the formation of dark pulse train,the measured repetition rate,pulse width,pulse energy and central wavelength are 8.3 MHz,20 ns and 4.98 p J and1596.82 nm,respectively.Both pulses operate in the anomalous region.
文摘GeSe nanosheets were prepared by ultrasonic-assisted liquid<span><span><span style="font-family:;" "=""> </span></span></span><span><span><span><span style="font-family:Verdana;">phase exfoliation (LPE), and the nonlinear saturated absorption performance was experimentally studied. The modulation depth and saturation intensity of the prepared GeSe saturable absorber (SA) were 15% and 1.44 MW/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">, respectively. Us</span><span style="font-family:Verdana;">ing the saturated absorption characteristics of GeSe SA, a passively Q-switched </span><span style="font-family:Verdana;">erbium-doped fiber laser was systematically demonstrated. As the pump</span><span style="font-family:Verdana;"> power increases, the pulse repetition frequency increases from 22.8 kHz to 77.59 </span><span style="font-family:Verdana;">kHz. The shortest pulse duration is 1.51 μs, and the corresponding pulse</span><span style="font-family:Verdana;"> energy is 46.14 nJ. Experimental results show that GeSe nanosheets can be used as high-efficiency SA in fiber lasers. Our results will provide a useful reference for demonstrating pulsed fiber lasers based on GeSe equipment.</span></span></span></span>
文摘<span style="font-family:Verdana;">T</span><span style="font-family:Verdana;font-size:12px;">he T</span><span style="font-family:Verdana;font-size:12px;">i</span><span style="font-family:Verdana;font-size:12px;">Se</span><sub><span style="font-family:Verdana;font-size:12px;">2</span></sub><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">nanosheets</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">were</span><span style="font-family:Verdana;font-size:12px;"> prepared by means of ultrasound-assisted liquid </span><span style="font-family:Verdana;font-size:12px;">phase exfoliation (LPE)</span><span style="font-family:Verdana;font-size:12px;"> and the </span><span style="font-family:Verdana;font-size:12px;">nonlinear </span><span style="font-family:Verdana;font-size:12px;">saturable absorption</span><span style="font-family:Verdana;font-size:12px;"> properties</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">were experimentally</span><span style="font-family:Verdana;font-size:12px;"> investigated. The modulation depth, saturation intensity and nonsaturable absorbance</span><span style="font-family:Verdana;font-size:12px;"> of the prepared </span><span style="font-family:Verdana;font-size:12px;">1T-TiSe</span><sub><span style="font-family:Verdana;font-size:12px;">2</span></sub><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">SA </span><span style="font-family:Verdana;font-size:12px;">were</span><span style="font-family:Verdana;font-size:12px;"> </span><span style="font-family:Verdana;font-size:12px;">1</span><span style="font-family:Verdana;font-size:12px;">5.7</span><span style="font-family:Verdana;font-size:12px;">%,</span><span style="font-family:Verdana;font-size:12px;"> 1.28 M</span><span style="font-family:Verdana;font-size:12px;">W/cm</span><sup><span style="font-family:Verdana;font-size:12px;vertical-align:super;">2</span></sup><span style="font-family:Verdana;font-size:12px;"> and 8.</span><span style="font-family:Verdana;font-size:12px;">2</span><span style="font-family:Verdana;font-size:12px;">%, </span><span style="font-family:Verdana;font-size:12px;">respectively</span><span style="font-family:Verdana;font-size:12px;">. Taking advantage of the saturable absorption properties of </span><span style="font-family:Verdana;font-size:12px;">T</span><span style="font-family:Verdana;font-size:12px;">i</span><span style="font-family:Verdana;font-size:12px;">Se</span><sub><span style="font-family:Verdana;font-size:12px;">2</span></sub><span style="font-family:Verdana;font-size:12px;">-based SA, a passively Q-switched erbium-doped fiber (EDF) laser was</span><span style="font-family:Verdana;font-size:12px;"> systematically demonstrated</span><span style="font-family:Verdana;font-size:12px;">. The pulse repetition rates varied from 24.50 kHz up to 73.79 kHz with the increasing pump power. The obtained shortest pulse width was 1.31 </span><span style="font-family:Verdana;font-size:12px;">μ</span><span style="font-family:Verdana;font-size:12px;">s with pulse energy of 79.28 nJ. The </span><span style="font-family:Verdana;font-size:12px;">system presented merits of low-cost SA preparation, system compactness,</span><span style="font-family:Verdana;font-size:12px;"> superb stability and high competition.</span>
基金supported by the Shaanxi Key Science and Technology Innovation Team Project(No.2023-CX-TD-06)。
文摘We demonstrate a stable narrow linewidth single-frequency erbium-doped fiber laser(EDFL)operating at 1.6μm.A Fabry–Perot fiber Bragg grating and two cascaded subrings are incorporated in the main ring cavity to achieve singlefrequency operation.The experimentally measured optical signal-to-noise ratio is greater than 73 dB.Furthermore,the linewidth of the EDFL is measured to be about 480 Hz by the self-built short-delayed self-heterodyne interferometry device.The laser shows superior stability,with no mode-hopping during the 60-min observation period.The proposed EDFL provides a new experimental idea for realizing a single-frequency fiber laser in the L-band.
基金supported by the National Key Basic Research Program of China (grant nos.2012CB821304,2013CB922401,and 2013CB922402)by the National Natural Science Foundation of China (NSFC) (grant nos.61205064,61378040,and 11078022)+1 种基金by the National Key Technology R&D Program of the Ministry of Science and Technology under grant no.2012BAC23B03by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications,grant no.600100161)
文摘Tungsten disulfide(WS_2) is a type of anisotropic-layered compound and has broadband saturable absorption features as saturable absorbers(SAs). With WS_2-based SAs, dark solitons in erbium-doped fiber(EDF) lasers are first obtained. For the generated dark solitons, the center wavelength is measured to be 1530 nm, and the repetition rate is about 116.5 MHz. A series of optical spectra is exhibited. The electrical signal-to-noise ratio is better than 94 d B.Results in this paper demonstrate that WS_2-based SAs are the promising SAs for generating dark solitons in EDF lasers.
基金supported by the National Natural Science Foundation of China (Grant Nos.61378028,61475030,61421002,and 61377037)the National Basic Research Program of China (2012CB315701)the NCET Program (Grant No.NCET-13-0092)
文摘We report an erbium-doped fiber laser passively Q-switched by a few-layer molybdenum disulfide(MoS2) saturable absorber(SA).The few-layer MoS2 is grown by the chemical vapor deposition method and transferred onto the end-face of a fiber connector to form a fiber-compatible MoS2 SA.The laser cavity is constructed by using a three-port optical circulator and a fiber Bragg grating(FBG) as the two end-mirrors.Stable Q-switched pulses are obtained with a pulse duration of 1.92 μs at 1560.5 nm.By increasing the pump power from 42 to 204 mW,the pulse repetition rate can be widely changed from 28.6 to 114.8 kHz.Passive Q-switching operations with discrete lasing wavelengths ranging from 1529.8 to 1570.1 nm are also investigated by using FBGs with different central wavelengths.This work demonstrates that few-layer MoS2 can serve as a promising SA for wideband-tunable Q-switching laser operation.
基金supported by National Natural Science Foundation of China (No.612050346)the Shenzhen Municipal Science and Technology Plan (Nos.2010B090400306,JC201105160592A,and JCYJ 20120613150130014)
文摘We reported on the generation of the dual-wavelength rectangular pulse in an erbium-doped fiber laser(EDFL)with a topological insulator saturable absorber.The rectangular pulse could be stably initiated with pulse width from 13.62 to 25.16 ns and fundamental repetition rate of 3.54 MHz by properly adjusting the pump power and the polarization state.In addition,we verified that the pulse shape of the dual-wavelength rectangular pulse can be affected by the total net cavity dispersion in the fiber laser.Furthermore,by properly rotating the polarization controllers,the harmonic mode-locking operation of the dual-wavelength rectangular pulse was also obtained.The dual-wavelength rectangular pulse EDFL would benefit some potential applications,such as spectroscopy,biomedicine,and sensing research.
文摘We demonstrate a multi-wavelength erbium-doped fiber laser (EDFL) using erbium gain and four-wave mixing (FWM) effect in a piece of erbium-doped fiber (EDF) with high erbium ion concentration. The EDF has a pump absorption rate of 24.6 dB/m at 979 nm and is bi-directionally pumped by 980-nm laser diodes. FWM effect redistributes the energy of different oscillating lines and causes multi-wavelength operation. The laser generates more than 22 lines of optical comb with a line spacing of approximately 0.10 nm at the 1569-nm region using only 1.5-m-long EDF.
基金Research Grants Council,University Grants Committee of Hong Kong,China(GRF 152109/16E Poly U B-Q52T)。
文摘Stable Q-switched and mode-locked erbium-doped fiber lasers(EDFLs)are first demonstrated by using the novel layered palladium disulfide(PdS2),a new member of group 10 transition metal dichalcogenides(TMDs)-based saturable absorbers(SAs).Self-started Q-switched operation at 1567 nm was achieved with a threshold pump power of 50.6 mW.The modulation ranges of pulse duration and repetition rate were characterized as 12.6-4.5μs and 17.2-26.0 kHz,respectively.Meanwhile,a mode-locked EDFL was also obtained with a pump power threshold of 106.4 mW.The achieved pulse duration is 803 fs,corresponding to a center wavelength of 1565.8 nm and4.48 nm 3 dB bandwidth.To the best of our knowledge,the achieved pulse duration of the mode-locked EDFL in this work is the narrowest compared with all other group 10 TMD SA-based lasers.
基金Project supported by the Hunan Provincial Natural Science Foundation of China(Nos.2018JJ3514 and 2019JJ40280)the Research and Development Plan of Key Areas in Hunan Province in 2019(No.2019GK2101)+2 种基金the Jiangsu Provincial Natural Science Foundation of China(No.BK20181050)the Natural Science Foundation of Jiangsu Higher Education Institutions of China(Nos.18KJB413007 and 19KJB10061)the 2019 Youth Special Scientific Research Project of Nanjing Xiaozhuang University,China(No.2019NXY17)。
文摘We demonstrate the generation of noise-like pulses(NLPs)and soliton rains in a graphene saturable absorber modelocked erbium-doped fiber laser.Typical NLPs are obtained at a proper pump power and in a cavity polarization state.The soliton rain operation with multiple solitons can be achieved by finely adjusting the cavity polarization state.In addition,distinctive multi-soliton interactions are observed and investigated,including the fundamental mode-locking and multiple pulses.The experimental results can help further understand nonlinear pulse dynamics in ultrafast optics.