The visual analysis of common neurological disorders such as epileptic seizures in electroencephalography(EEG) is an oversensitive operation and prone to errors,which has motivated the researchers to develop effective...The visual analysis of common neurological disorders such as epileptic seizures in electroencephalography(EEG) is an oversensitive operation and prone to errors,which has motivated the researchers to develop effective automated seizure detection methods.This paper proposes a robust automatic seizure detection method that can establish a veritable diagnosis of these diseases.The proposed method consists of three steps:(i) remove artifact from EEG data using Savitzky-Golay filter and multi-scale principal component analysis(MSPCA),(ii) extract features from EEG signals using signal decomposition representations based on empirical mode decomposition(EMD),discrete wavelet transform(DWT),and dual-tree complex wavelet transform(DTCWT) allowing to overcome the non-linearity and non-stationary of EEG signals,and(iii) allocate the feature vector to the relevant class(i.e.,seizure class "ictal" or free seizure class "interictal") using machine learning techniques such as support vector machine(SVM),k-nearest neighbor(k-NN),and linear discriminant analysis(LDA).The experimental results were based on two EEG datasets generated from the CHB-MIT database with and without overlapping process.The results obtained have shown the effectiveness of the proposed method that allows achieving a higher classification accuracy rate up to 100% and also outperforms similar state-of-the-art methods.展开更多
Structural health monitoring(SHM)in-service is very important for wind turbine system.Because the central wavelength of a fiber Bragg grating(FBG)sensor changes linearly with strain or temperature,FBG-based sensors ar...Structural health monitoring(SHM)in-service is very important for wind turbine system.Because the central wavelength of a fiber Bragg grating(FBG)sensor changes linearly with strain or temperature,FBG-based sensors are easily applied to structural tests.Therefore,the monitoring of wind turbine blades by FBG sensors is proposed.The method is experimentally proved to be feasible.Five FBG sensors were set along the blade length in order to measure distributed strain.However,environmental or measurement noise may cover the structural signals.Dual-tree complex wavelet transform(DT-CWT)is suggested to wipe off the noise.The experimental studies indicate that the tested strain fluctuate distinctly as one of the blades is broken.The rotation period is about 1 s at the given working condition.However,the period is about 0.3 s if all the wind blades are in good conditions.Therefore,strain monitoring by FBG sensors could predict damage of a wind turbine blade system.Moreover,the studies indicate that monitoring of one blade is adequate to diagnose the status of a wind generator.展开更多
We tried to apply the dual-tree complex wavelet packet transform in seismic signal analysis. The complex wavelet packet transform (CWPT) combine the merits of real wavelet packet transform with that of complex contin...We tried to apply the dual-tree complex wavelet packet transform in seismic signal analysis. The complex wavelet packet transform (CWPT) combine the merits of real wavelet packet transform with that of complex continuous wavelet transform (CCWT). It can not only pick up the phase information of signal, but also produce better ″focal- izing″ function if it matches the phase spectrum of signals analyzed. We here described the dual-tree CWPT algo- rithm, and gave the examples of simulation and actual seismic signals analysis. As shown by our results, the dual-tree CWPT is a very effective method in analyzing seismic signals with non-linear phase.展开更多
The dual-tree complex wavelet transform is a useful tool in signal and image process- ing. In this paper, we propose a dual-tree complex wavelet transform (CWT) based algorithm for image inpalnting problem. Our appr...The dual-tree complex wavelet transform is a useful tool in signal and image process- ing. In this paper, we propose a dual-tree complex wavelet transform (CWT) based algorithm for image inpalnting problem. Our approach is based on Cai, Chan, Shen and Shen's framelet-based algorithm. The complex wavelet transform outperforms the standard real wavelet transform in the sense of shift-invariance, directionality and anti-aliasing. Numerical results illustrate the good performance of our algorithm.展开更多
Textile-reinforced composites,due to their excellent highstrength-to-low-mass ratio, provide promising alternatives to conventional structural materials in many high-tech sectors. 3D braided composites are a kind of a...Textile-reinforced composites,due to their excellent highstrength-to-low-mass ratio, provide promising alternatives to conventional structural materials in many high-tech sectors. 3D braided composites are a kind of advanced composites reinforced with 3D braided fabrics; the complex nature of 3D braided composites makes the evaluation of the quality of the product very difficult. In this investigation,a defect recognition platform for 3D braided composites evaluation was constructed based on dual-tree complex wavelet packet transform( DT-CWPT) and backpropagation( BP) neural networks. The defects in 3D braided composite materials were probed and detected by an ultrasonic sensing system. DT-CWPT method was used to analyze the ultrasonic scanning pulse signals,and the feature vectors of these signals were extracted into the BP neural networks as samples. The type of defects was identified and recognized with the characteristic ultrasonic wave spectra. The position of defects for the test samples can be determined at the same time. This method would have great potential to evaluate the quality of 3D braided composites.展开更多
Bit-field separation is an important part of gravity and magnetic data processing.In order to extract different levels of anomaly information better,this paper introduces the dual-tree complex wavelet multi-scale sepa...Bit-field separation is an important part of gravity and magnetic data processing.In order to extract different levels of anomaly information better,this paper introduces the dual-tree complex wavelet multi-scale separation to the processing of bit-field data firstly and uses the geological model of different buried depth to ve-rify its feasibility.Finally,the dual-tree complex wavelet is applied to the aeromagnetic anomaly in Jinchuan copper nickel mining area.The results show that the method can effectively separate the anomaly information of different scales and analyze the output results with relevant geological data.展开更多
Currently, horizontal well fracturing is indispensable for shale gas development. Due to the variable reservoir formation morphology, the drilling trajectory often deviates from the high-quality reservoir,which increa...Currently, horizontal well fracturing is indispensable for shale gas development. Due to the variable reservoir formation morphology, the drilling trajectory often deviates from the high-quality reservoir,which increases the risk of fracturing. Accurately recognizing low-amplitude structures plays a crucial role in guiding horizontal wells. However, existing methods have low recognition accuracy, and are difficult to meet actual production demand. In order to improve the drilling encounter rate of high-quality reservoirs, we propose a method for fine recognition of low-amplitude structures based on the non-subsampled contourlet transform(NSCT). Firstly, the seismic structural data are analyzed at multiple scales and directions using the NSCT and decomposed into low-frequency and high-frequency structural components. Then, the signal of each component is reconstructed to eliminate the low-frequency background of the structure, highlight the structure and texture information, and recognize the low-amplitude structure from it. Finally, we combined the drilled horizontal wells to verify the low-amplitude structural recognition results. Taking a study area in the west Sichuan Basin block as an example, we demonstrate the fine identification of low-amplitude structures based on NSCT. By combining the variation characteristics of logging curves, such as organic carbon content(TOC), natural gamma value(GR), etc., the real structure type is verified and determined, and the false structures in the recognition results are checked. The proposed method can provide reliable information on low-amplitude structures for optimizing the trajectory of horizontal wells. Compared with identification methods based on traditional wavelet transform and curvelet transform, NSCT enhances the local features of low-amplitude structures and achieves finer mapping of low-amplitude structures, showing promise for application.展开更多
文摘The visual analysis of common neurological disorders such as epileptic seizures in electroencephalography(EEG) is an oversensitive operation and prone to errors,which has motivated the researchers to develop effective automated seizure detection methods.This paper proposes a robust automatic seizure detection method that can establish a veritable diagnosis of these diseases.The proposed method consists of three steps:(i) remove artifact from EEG data using Savitzky-Golay filter and multi-scale principal component analysis(MSPCA),(ii) extract features from EEG signals using signal decomposition representations based on empirical mode decomposition(EMD),discrete wavelet transform(DWT),and dual-tree complex wavelet transform(DTCWT) allowing to overcome the non-linearity and non-stationary of EEG signals,and(iii) allocate the feature vector to the relevant class(i.e.,seizure class "ictal" or free seizure class "interictal") using machine learning techniques such as support vector machine(SVM),k-nearest neighbor(k-NN),and linear discriminant analysis(LDA).The experimental results were based on two EEG datasets generated from the CHB-MIT database with and without overlapping process.The results obtained have shown the effectiveness of the proposed method that allows achieving a higher classification accuracy rate up to 100% and also outperforms similar state-of-the-art methods.
基金supported by the National Natural Science Foundation of China(No.11402112)the National Key Technology Support Program (No.2012BAA01B02)。
文摘Structural health monitoring(SHM)in-service is very important for wind turbine system.Because the central wavelength of a fiber Bragg grating(FBG)sensor changes linearly with strain or temperature,FBG-based sensors are easily applied to structural tests.Therefore,the monitoring of wind turbine blades by FBG sensors is proposed.The method is experimentally proved to be feasible.Five FBG sensors were set along the blade length in order to measure distributed strain.However,environmental or measurement noise may cover the structural signals.Dual-tree complex wavelet transform(DT-CWT)is suggested to wipe off the noise.The experimental studies indicate that the tested strain fluctuate distinctly as one of the blades is broken.The rotation period is about 1 s at the given working condition.However,the period is about 0.3 s if all the wind blades are in good conditions.Therefore,strain monitoring by FBG sensors could predict damage of a wind turbine blade system.Moreover,the studies indicate that monitoring of one blade is adequate to diagnose the status of a wind generator.
基金CulturalHeritage Protection Program of State Administration of CulturalHeritage (200001).
文摘We tried to apply the dual-tree complex wavelet packet transform in seismic signal analysis. The complex wavelet packet transform (CWPT) combine the merits of real wavelet packet transform with that of complex continuous wavelet transform (CCWT). It can not only pick up the phase information of signal, but also produce better ″focal- izing″ function if it matches the phase spectrum of signals analyzed. We here described the dual-tree CWPT algo- rithm, and gave the examples of simulation and actual seismic signals analysis. As shown by our results, the dual-tree CWPT is a very effective method in analyzing seismic signals with non-linear phase.
基金Supported by the National Natural Science Foundation of China (10971189, 11001247)the Zhejiang Natural Science Foundation of China (Y6090091)
文摘The dual-tree complex wavelet transform is a useful tool in signal and image process- ing. In this paper, we propose a dual-tree complex wavelet transform (CWT) based algorithm for image inpalnting problem. Our approach is based on Cai, Chan, Shen and Shen's framelet-based algorithm. The complex wavelet transform outperforms the standard real wavelet transform in the sense of shift-invariance, directionality and anti-aliasing. Numerical results illustrate the good performance of our algorithm.
基金National Natural Science Foundation of China(No.51303131)
文摘Textile-reinforced composites,due to their excellent highstrength-to-low-mass ratio, provide promising alternatives to conventional structural materials in many high-tech sectors. 3D braided composites are a kind of advanced composites reinforced with 3D braided fabrics; the complex nature of 3D braided composites makes the evaluation of the quality of the product very difficult. In this investigation,a defect recognition platform for 3D braided composites evaluation was constructed based on dual-tree complex wavelet packet transform( DT-CWPT) and backpropagation( BP) neural networks. The defects in 3D braided composite materials were probed and detected by an ultrasonic sensing system. DT-CWPT method was used to analyze the ultrasonic scanning pulse signals,and the feature vectors of these signals were extracted into the BP neural networks as samples. The type of defects was identified and recognized with the characteristic ultrasonic wave spectra. The position of defects for the test samples can be determined at the same time. This method would have great potential to evaluate the quality of 3D braided composites.
基金the National Key R&D Program of China(No.2016YFC0600505).
文摘Bit-field separation is an important part of gravity and magnetic data processing.In order to extract different levels of anomaly information better,this paper introduces the dual-tree complex wavelet multi-scale separation to the processing of bit-field data firstly and uses the geological model of different buried depth to ve-rify its feasibility.Finally,the dual-tree complex wavelet is applied to the aeromagnetic anomaly in Jinchuan copper nickel mining area.The results show that the method can effectively separate the anomaly information of different scales and analyze the output results with relevant geological data.
基金supported by Sichuan Science and Technology Program under Grant 2024NSFSC1984 and Grant 2024NSFSC1990。
文摘Currently, horizontal well fracturing is indispensable for shale gas development. Due to the variable reservoir formation morphology, the drilling trajectory often deviates from the high-quality reservoir,which increases the risk of fracturing. Accurately recognizing low-amplitude structures plays a crucial role in guiding horizontal wells. However, existing methods have low recognition accuracy, and are difficult to meet actual production demand. In order to improve the drilling encounter rate of high-quality reservoirs, we propose a method for fine recognition of low-amplitude structures based on the non-subsampled contourlet transform(NSCT). Firstly, the seismic structural data are analyzed at multiple scales and directions using the NSCT and decomposed into low-frequency and high-frequency structural components. Then, the signal of each component is reconstructed to eliminate the low-frequency background of the structure, highlight the structure and texture information, and recognize the low-amplitude structure from it. Finally, we combined the drilled horizontal wells to verify the low-amplitude structural recognition results. Taking a study area in the west Sichuan Basin block as an example, we demonstrate the fine identification of low-amplitude structures based on NSCT. By combining the variation characteristics of logging curves, such as organic carbon content(TOC), natural gamma value(GR), etc., the real structure type is verified and determined, and the false structures in the recognition results are checked. The proposed method can provide reliable information on low-amplitude structures for optimizing the trajectory of horizontal wells. Compared with identification methods based on traditional wavelet transform and curvelet transform, NSCT enhances the local features of low-amplitude structures and achieves finer mapping of low-amplitude structures, showing promise for application.