The stretch forming and the deep-drawing processes were carried out at 300 and 673 K to determine the safe forming and fracture limits of IN625 alloy.The experimentally obtained strain-based fracture forming limit dia...The stretch forming and the deep-drawing processes were carried out at 300 and 673 K to determine the safe forming and fracture limits of IN625 alloy.The experimentally obtained strain-based fracture forming limit diagram(FFLD)was transformed into a stress-based(σ-FFLD)and effective plastic strain(EPS)vs triaxiality(η)plot to remove the excess dependency of fracture limits over the strains.For the prediction of fracture limits,seven different damage models were calibrated.The Oh model displayed the best ability to predict the fracture locus with the least absolute error.Though the experimentally obtained fracture limits have only been used for the numerical analysis,none of the considered damage models predicted the fracture strains over the entire considered range of stress triaxiality(0.33<η<0.66).The deep drawing process window helped to determine wrinkling,safe and fracture zones while drawing the cylindrical cups under different temperature and lubricating conditions.Further,the highest drawing ratio of 2 was achieved at 673 K under the lubricating condition.All the numerically predicted results of both stretch forming and deep drawing processes using the Hill 1948 anisotropic yielding function were found to be good within the acceptable range of error.展开更多
The paper deals with the numerical modelling of ductile damage responses in heterogeneous materials using the classical second-order homogenization approach.The scale transition methodology in the multiscale framework...The paper deals with the numerical modelling of ductile damage responses in heterogeneous materials using the classical second-order homogenization approach.The scale transition methodology in the multiscale framework is described.The structure at the macrolevel is discretized by the triangular C^(1) finite elements obeying nonlocal continuum theory,while the discretization of microstructural volume element at the microscale is conducted by means of the mixed type quadrilateral finite element with the nonlocal equivalent plastic strain as an additional nodal variable.The ductile damage evolution at the microlevel is modelled by using the gradient enhanced elastoplasticity.The macrolevel softening is governed by two criterions expressed by the increase in homogenized damage variable and the threshold of the local equivalent strain.The softening at each material point at the macrolevel is detected by the critical value of the homogenized damage,where homogenization of the damage variable is performed onlywithin softening area.Due to the nonlocal continuumtheory applied,a realistic softening behaviour is demonstrated after the damage initiation,compared to the widely used first-order homogenization approach.All algorithms derived have been embedded into the finite element code ABAQUS by means of the user subroutines and verified on the standard benchmark problems.The damage evolution at both microlevel and macrolevel has been demonstrated.展开更多
Prediction of forming limit in sheet metal forming is among the most important challenges confronting researchers. In this paper, a fully coupled elastic-plastic-damage model has been developed and implemented into an...Prediction of forming limit in sheet metal forming is among the most important challenges confronting researchers. In this paper, a fully coupled elastic-plastic-damage model has been developed and implemented into an explicit code. Due to the adoption of the plane stress and finite strain theories, model can predict deformation and damage of parts quickly and accurately. Also, damage initiation, propagation, and fracture in some operations are predicted and validated with experiments. It is concluded that finite strain combined with continuum damage mechanics can be used as a quick tool to predict ductile damage, fracture, and forming limits in sheet metal forming processes.展开更多
A numerical analysis of mechanical behavior of aluminum alloy sheet under cyclic plastic deformation was investigated.Forming limit at fracture was derived from Cockcroft-Latham ductile damage criterion.The strain pat...A numerical analysis of mechanical behavior of aluminum alloy sheet under cyclic plastic deformation was investigated.Forming limit at fracture was derived from Cockcroft-Latham ductile damage criterion.The strain path of bending center of incremental roller hemming could be accepted as a kind of plane strain bending deformation process.Incremental rope roller hemming could be used to alleviate ductile fracture behavior by changing the stress state of the hemming-effected area.SEM observation on the fracture surface indicates that cyclic plastic deformation affects ductile fracture mechanism.展开更多
Ductile damage often occurs during metal forming processes due to the large thermo-elasto (visco) plastic flow Iocalisation. This paper presents a numerical methodology, which aims to virtually improve any metal for...Ductile damage often occurs during metal forming processes due to the large thermo-elasto (visco) plastic flow Iocalisation. This paper presents a numerical methodology, which aims to virtually improve any metal forming processes. The methodology is based on elastoplastic constitutive equations accounting for nonlinear mixed isotropic and kinematic hardening strongly coupled with isotropic ductile damage. An adaptive remeshing scheme based on geometrical and physical error estimates including a kill element procedure is used. Some numerical results are presented to show the capability of the model to predict the damage initiation and growth during the metal forming processes.展开更多
Fineblanking process is a typical large localized plastic deformation process. Based on its forming characteristics, a numerical model is established and an elasto-plastic simulation is performed using the finite elem...Fineblanking process is a typical large localized plastic deformation process. Based on its forming characteristics, a numerical model is established and an elasto-plastic simulation is performed using the finite element method (FEM). The re-meshing method is used when the severe element distortion occurs to facilitate further computation and avoid divergence. The McClintock fracture criterion is adopted to predict and determine the time and site of crack initiation and propagation. Based on this numerical model, the distribution and developing trend of the stress and strain in the shearing zone are predicted. Furthermore, the influence of several process parameters, such as punch-die clearance, edge radius of punch and die, V-ring force, counter force, etc., on the blanked quality is analyzed. The discipline is in accordance with the actual manufacture situation, which can be a guidance to optimization of process parameters.展开更多
A lower bound approach is proposed for the first time to solve the macroscopic yield loci of porous materials.The results are then compared with Gurson's upper bound yield loci and those of the experiments.It is s...A lower bound approach is proposed for the first time to solve the macroscopic yield loci of porous materials.The results are then compared with Gurson's upper bound yield loci and those of the experiments.It is shown that the present analysis is much more in accordance with the experimen- tal results than the Gurson's.展开更多
Sheet bulk metal forming processes have been widely developed to the facilitate manufacture of complicated 3D parts. However, there is still not enough know-how available. In this paper, as one of the typical sheet bu...Sheet bulk metal forming processes have been widely developed to the facilitate manufacture of complicated 3D parts. However, there is still not enough know-how available. In this paper, as one of the typical sheet bulk metal forming processes, the sheet metal extrusion process was studied. A reasonable finite element method (FEM) model of sheet metal extrusion process taking the influence of flow-stress curve with wide range of plastic strain and ductile damage into consideration was established and simulated by an arbitrary Lagrangian-Eulerian (ALE) FEM implemented in MSC.Marc. Validated by comparing the results with experiment, some phenomenological characteristics, such as metal flow behavior, shrinkage cavity, and the influence of different combinations of diameter of punch, diameter of extrusion outlet, and diameter of pre-punched hole were analyzed and concluded, which can be used as theoretical fundamental for the design of the sheet metal extrusion process.展开更多
In order to accurately simulate the fine-blanking process, a suitable ductile fracture is significant.So an evaluation strategy based on experimental and corresponding simulation results of tensile, compression, torsi...In order to accurately simulate the fine-blanking process, a suitable ductile fracture is significant.So an evaluation strategy based on experimental and corresponding simulation results of tensile, compression, torsion and fine-blanking test is designed to evaluate five typical ductile fracture criteria, which are widely-used in metal forming process.The stress triaxiality and ductile damage of each test specimen are analyzed.The results show that none of these five criteria is sufficient for all tests.Furthermore, an improved fracture criterion based on Rice and Tracey model, taking the influence of both volume change and shape change of voids into account, is proposed.The characterization of this model for fine-blanking process is easily done by the tensile test and the prediction result shows good.展开更多
In this study,the numerical simulations of sheet metal forming processes are performed based on a fully coupled elastoplastic damage model.The effects of stress triaxiality and Lode angle are introduced into the damag...In this study,the numerical simulations of sheet metal forming processes are performed based on a fully coupled elastoplastic damage model.The effects of stress triaxiality and Lode angle are introduced into the damage evolution law to capture the loading-path-dependent failure.The proposed constitutive model is implemented into the finite element(FE)code ABAQUS/Explicit via the user-defined subroutine(VUMAT).Next,the identification procedure for DP780 based on the hybrid experimental-numerical method is presented in detail.The numerical results of simple tests are compared with the experiments,and obvious improvement is observed for the proposed model under various loading paths.Finally,the model is applied to predict the edge fracture during sheet blanking process.The predicted global load–displacement responses and crack paths have a good agreement with the experimental results,indicating that the model holds great potentials in simulation of metal forming processes.展开更多
A 2D micro-mechanical model was proposed to study the compressive failure of Uni Directional(UD) carbon/epoxy composite. Considering the initial imperfection and strength distribution of the fiber, the plasticity an...A 2D micro-mechanical model was proposed to study the compressive failure of Uni Directional(UD) carbon/epoxy composite. Considering the initial imperfection and strength distribution of the fiber, the plasticity and ductile damage of the matrix, the failure of T300/914 UD composite under longitudinal compression and in-plane combined loads was simulated by this model. Simulation results show that the longitudinal compressive failure of the UD composite is caused by the plastic yielding of the matrix in kink band, and the fiber initial imperfection is the main reason for it. Under in-plane combined loads, the stress state of the matrix in kink band is changed, which affects the longitudinal compressive failure modes and strength of UD composite.The failure envelope of r_1–s_(12) and r_1–r_2 are obtained by the micro-mechanical model. Meanwhile,the compressive failure mechanism of the UD composite is analyzed. Numerical results agree well with the experimental data, which verifies the validity of the micro-mechanical model.展开更多
Clinching is a convenient and efficient cold forming process that can join two sheets without any additional part. This study establishes an intelligent system for optimizing the clinched joint. Firstly, a mathematica...Clinching is a convenient and efficient cold forming process that can join two sheets without any additional part. This study establishes an intelligent system for optimizing the clinched joint. Firstly, a mathematical model which introduces the ductile damage constraint to prevent cracking during clinching process is proposed.Meanwhile, an optimization methodology and its corresponding computer program are developed by integrated finite element model(FEM) and genetic algorithm(GA) approach. Secondly, Al6061-T4 alloy sheets with a thickness of 1.4 mm are used to verify this optimization system. The optimization program automatically acquires the largest axial strength which is approximately equal to 872 N. Finally, sensitivity analysis is implemented, in which the influence of geometrical parameters of clinching tools on final joint strength is analyzed. The sensitivity analysis indicates the main parameters to influence joint strength, which is essential from an industrial point of view.展开更多
基金Science and Engineering Research Board,Government of India(ECR/2016/001402)BITS-Pilani,Hyderabad Campus。
文摘The stretch forming and the deep-drawing processes were carried out at 300 and 673 K to determine the safe forming and fracture limits of IN625 alloy.The experimentally obtained strain-based fracture forming limit diagram(FFLD)was transformed into a stress-based(σ-FFLD)and effective plastic strain(EPS)vs triaxiality(η)plot to remove the excess dependency of fracture limits over the strains.For the prediction of fracture limits,seven different damage models were calibrated.The Oh model displayed the best ability to predict the fracture locus with the least absolute error.Though the experimentally obtained fracture limits have only been used for the numerical analysis,none of the considered damage models predicted the fracture strains over the entire considered range of stress triaxiality(0.33<η<0.66).The deep drawing process window helped to determine wrinkling,safe and fracture zones while drawing the cylindrical cups under different temperature and lubricating conditions.Further,the highest drawing ratio of 2 was achieved at 673 K under the lubricating condition.All the numerically predicted results of both stretch forming and deep drawing processes using the Hill 1948 anisotropic yielding function were found to be good within the acceptable range of error.
文摘The paper deals with the numerical modelling of ductile damage responses in heterogeneous materials using the classical second-order homogenization approach.The scale transition methodology in the multiscale framework is described.The structure at the macrolevel is discretized by the triangular C^(1) finite elements obeying nonlocal continuum theory,while the discretization of microstructural volume element at the microscale is conducted by means of the mixed type quadrilateral finite element with the nonlocal equivalent plastic strain as an additional nodal variable.The ductile damage evolution at the microlevel is modelled by using the gradient enhanced elastoplasticity.The macrolevel softening is governed by two criterions expressed by the increase in homogenized damage variable and the threshold of the local equivalent strain.The softening at each material point at the macrolevel is detected by the critical value of the homogenized damage,where homogenization of the damage variable is performed onlywithin softening area.Due to the nonlocal continuumtheory applied,a realistic softening behaviour is demonstrated after the damage initiation,compared to the widely used first-order homogenization approach.All algorithms derived have been embedded into the finite element code ABAQUS by means of the user subroutines and verified on the standard benchmark problems.The damage evolution at both microlevel and macrolevel has been demonstrated.
文摘Prediction of forming limit in sheet metal forming is among the most important challenges confronting researchers. In this paper, a fully coupled elastic-plastic-damage model has been developed and implemented into an explicit code. Due to the adoption of the plane stress and finite strain theories, model can predict deformation and damage of parts quickly and accurately. Also, damage initiation, propagation, and fracture in some operations are predicted and validated with experiments. It is concluded that finite strain combined with continuum damage mechanics can be used as a quick tool to predict ductile damage, fracture, and forming limits in sheet metal forming processes.
基金Project(2010CB731703) supported by the National Basic Research Program of China Project(0804) supported by the Shanghai Automotive Industry Corporation Foundation,ChinaProject(MSV-2010-03) supported by State Key Laboratory of Mechanical System and Vibration,Shanghai Jiao Tong University,China
文摘A numerical analysis of mechanical behavior of aluminum alloy sheet under cyclic plastic deformation was investigated.Forming limit at fracture was derived from Cockcroft-Latham ductile damage criterion.The strain path of bending center of incremental roller hemming could be accepted as a kind of plane strain bending deformation process.Incremental rope roller hemming could be used to alleviate ductile fracture behavior by changing the stress state of the hemming-effected area.SEM observation on the fracture surface indicates that cyclic plastic deformation affects ductile fracture mechanism.
文摘Ductile damage often occurs during metal forming processes due to the large thermo-elasto (visco) plastic flow Iocalisation. This paper presents a numerical methodology, which aims to virtually improve any metal forming processes. The methodology is based on elastoplastic constitutive equations accounting for nonlinear mixed isotropic and kinematic hardening strongly coupled with isotropic ductile damage. An adaptive remeshing scheme based on geometrical and physical error estimates including a kill element procedure is used. Some numerical results are presented to show the capability of the model to predict the damage initiation and growth during the metal forming processes.
基金The National Natural Science Foundation of China(No50505027)
文摘Fineblanking process is a typical large localized plastic deformation process. Based on its forming characteristics, a numerical model is established and an elasto-plastic simulation is performed using the finite element method (FEM). The re-meshing method is used when the severe element distortion occurs to facilitate further computation and avoid divergence. The McClintock fracture criterion is adopted to predict and determine the time and site of crack initiation and propagation. Based on this numerical model, the distribution and developing trend of the stress and strain in the shearing zone are predicted. Furthermore, the influence of several process parameters, such as punch-die clearance, edge radius of punch and die, V-ring force, counter force, etc., on the blanked quality is analyzed. The discipline is in accordance with the actual manufacture situation, which can be a guidance to optimization of process parameters.
文摘A lower bound approach is proposed for the first time to solve the macroscopic yield loci of porous materials.The results are then compared with Gurson's upper bound yield loci and those of the experiments.It is shown that the present analysis is much more in accordance with the experimen- tal results than the Gurson's.
基金supported by National Science & Technology Major Project of China (No. 2009ZX04014-073)National Natural Science Foundation of China (No. 50975175)
文摘Sheet bulk metal forming processes have been widely developed to the facilitate manufacture of complicated 3D parts. However, there is still not enough know-how available. In this paper, as one of the typical sheet bulk metal forming processes, the sheet metal extrusion process was studied. A reasonable finite element method (FEM) model of sheet metal extrusion process taking the influence of flow-stress curve with wide range of plastic strain and ductile damage into consideration was established and simulated by an arbitrary Lagrangian-Eulerian (ALE) FEM implemented in MSC.Marc. Validated by comparing the results with experiment, some phenomenological characteristics, such as metal flow behavior, shrinkage cavity, and the influence of different combinations of diameter of punch, diameter of extrusion outlet, and diameter of pre-punched hole were analyzed and concluded, which can be used as theoretical fundamental for the design of the sheet metal extrusion process.
基金the National Natural Science Foundation of China (No. 50505027)the Research Fund forthe Doctoral Program of Higher Education of China(No. 20070248056)
文摘In order to accurately simulate the fine-blanking process, a suitable ductile fracture is significant.So an evaluation strategy based on experimental and corresponding simulation results of tensile, compression, torsion and fine-blanking test is designed to evaluate five typical ductile fracture criteria, which are widely-used in metal forming process.The stress triaxiality and ductile damage of each test specimen are analyzed.The results show that none of these five criteria is sufficient for all tests.Furthermore, an improved fracture criterion based on Rice and Tracey model, taking the influence of both volume change and shape change of voids into account, is proposed.The characterization of this model for fine-blanking process is easily done by the tensile test and the prediction result shows good.
基金supported by the Fundamental Research Funds for the Central Universities(20CX06023A)Qingdao Postdoctoral Applied Research Program(QD20190014)+1 种基金National Natural Science Foundation of China(No.11802131)Key R&D Program in Shandong Province(2019GHZ001).
文摘In this study,the numerical simulations of sheet metal forming processes are performed based on a fully coupled elastoplastic damage model.The effects of stress triaxiality and Lode angle are introduced into the damage evolution law to capture the loading-path-dependent failure.The proposed constitutive model is implemented into the finite element(FE)code ABAQUS/Explicit via the user-defined subroutine(VUMAT).Next,the identification procedure for DP780 based on the hybrid experimental-numerical method is presented in detail.The numerical results of simple tests are compared with the experiments,and obvious improvement is observed for the proposed model under various loading paths.Finally,the model is applied to predict the edge fracture during sheet blanking process.The predicted global load–displacement responses and crack paths have a good agreement with the experimental results,indicating that the model holds great potentials in simulation of metal forming processes.
文摘A 2D micro-mechanical model was proposed to study the compressive failure of Uni Directional(UD) carbon/epoxy composite. Considering the initial imperfection and strength distribution of the fiber, the plasticity and ductile damage of the matrix, the failure of T300/914 UD composite under longitudinal compression and in-plane combined loads was simulated by this model. Simulation results show that the longitudinal compressive failure of the UD composite is caused by the plastic yielding of the matrix in kink band, and the fiber initial imperfection is the main reason for it. Under in-plane combined loads, the stress state of the matrix in kink band is changed, which affects the longitudinal compressive failure modes and strength of UD composite.The failure envelope of r_1–s_(12) and r_1–r_2 are obtained by the micro-mechanical model. Meanwhile,the compressive failure mechanism of the UD composite is analyzed. Numerical results agree well with the experimental data, which verifies the validity of the micro-mechanical model.
基金the Fundamental Research Funds for the Central Universities of China(No.CDJZR14130006)
文摘Clinching is a convenient and efficient cold forming process that can join two sheets without any additional part. This study establishes an intelligent system for optimizing the clinched joint. Firstly, a mathematical model which introduces the ductile damage constraint to prevent cracking during clinching process is proposed.Meanwhile, an optimization methodology and its corresponding computer program are developed by integrated finite element model(FEM) and genetic algorithm(GA) approach. Secondly, Al6061-T4 alloy sheets with a thickness of 1.4 mm are used to verify this optimization system. The optimization program automatically acquires the largest axial strength which is approximately equal to 872 N. Finally, sensitivity analysis is implemented, in which the influence of geometrical parameters of clinching tools on final joint strength is analyzed. The sensitivity analysis indicates the main parameters to influence joint strength, which is essential from an industrial point of view.