期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
海冰韧脆转变特性的宏微观分析 被引量:16
1
作者 李洪升 岳前进 +1 位作者 郑靖明 朱元林 《冰川冻土》 CSCD 北大核心 2000年第1期48-52,共5页
冰荷载是寒区海洋工程结构物设计的控制荷载,海冰强度研究是确定冰荷载的基础.从宏微观结合的角度研究海冰强度特性,通过对海冰韧脆转变的微观机制分析,给出了微裂纹形成机制和矿展机制;通过对Rice-Thomson模型的分析... 冰荷载是寒区海洋工程结构物设计的控制荷载,海冰强度研究是确定冰荷载的基础.从宏微观结合的角度研究海冰强度特性,通过对海冰韧脆转变的微观机制分析,给出了微裂纹形成机制和矿展机制;通过对Rice-Thomson模型的分析,得出了韧-脆转变的判据;最后进行了韧脆转变区的强度计算。 展开更多
关键词 海冰 强度 韧脆转变 宏微观分析
下载PDF
海陆过渡相与海相富有机质页岩储层特征差异 被引量:8
2
作者 蔡光银 蒋裕强 +5 位作者 李星涛 孙莎莎 付永红 谷一凡 王占磊 季春海 《沉积学报》 CAS CSCD 北大核心 2022年第4期1030-1042,共13页
海陆过渡相页岩气逐渐成为非常规油气的接替能源,系统分析海相与海陆过渡相储层特征差异,可为海陆过渡相页岩气勘探开发提供借鉴。选取大吉区块山32亚段底部海陆过渡相、威远区块龙一11小层海相页岩,开展TOC、有机质显微组分、全岩—黏... 海陆过渡相页岩气逐渐成为非常规油气的接替能源,系统分析海相与海陆过渡相储层特征差异,可为海陆过渡相页岩气勘探开发提供借鉴。选取大吉区块山32亚段底部海陆过渡相、威远区块龙一11小层海相页岩,开展TOC、有机质显微组分、全岩—黏土X衍射、物性、氩离子抛光扫描电镜、氮气吸附、核磁共振等实验,厘清了海相与海陆过渡相页岩储层宏观参数与微观孔隙结构两方面差异。结果显示:与海相页岩储层相比,海陆过渡相页岩储层TOC含量高达10.91%,干酪根类型为Ⅱ2型,黏土矿物以高岭石为主,孔隙度与含气量略低。微观储层特征方面,海相页岩储层孔隙类型以有机孔为主,孔径分布介于10~50 nm,微裂缝主要为生烃增压缝和成岩缝,而海陆过渡相页岩储层孔隙类型以无机孔为主,孔径分布介于5~20 nm,有机孔多为孤立状不规则孔隙,微裂缝主要为有机质边缘缝和黏土矿物层间缝。在此基础上,初步揭示了海陆过渡相优质页岩储层孔隙发育受控于有机质和黏土矿物类型,阐释了页岩气赋存的优势孔隙类型为黏土矿物粒间孔。借鉴浅层海相页岩气的成功勘探实践经验,仍需加强有机质、矿物组分、孔隙赋气机制之间的三元耦合关系研究,以期为海陆过渡相页岩气的勘探开发提供坚实的理论支撑。 展开更多
关键词 浅层海相页岩 海陆过渡相页岩 山西组 储层宏观参数 微观孔隙结构 控制因素
下载PDF
Absolute Internal Energy of the Real Gas 被引量:1
3
作者 Albrecht Elsner 《Engineering(科研)》 2017年第4期361-375,共15页
The internal energy U of the real, neutral-gas particles of total mass M in the volume V can have positive and negative values, whose regions are identified in the state chart of the gas. Depending on the relations am... The internal energy U of the real, neutral-gas particles of total mass M in the volume V can have positive and negative values, whose regions are identified in the state chart of the gas. Depending on the relations among gas temperature T, pressure p and mass-specific volume v=V/M, the mass exists as a uniform gas of freely-moving particles having positive values U or as more or less structured matter with negative values U. In the regions U>0?above the critical point [Tc , pc , vc] it holds that p(T,v)>pc and v>vc, and below the critical point it holds that p(T,v)c and v>vv , where vv is the mass-specific volume of saturated vapor. In the adjacent regions with negative internal energy values Uc is the line of equal positive and negative energy contributions and thus represents a line of vanishing internal energy ?U=0. At this level along the critical isochor the ever present microscopic fluctuations in energy and density become macroscopic fluctuations as the pressure decreases on approaching the critical point;these are to be observed in experiments on the critical opalescence. Crossing the isochor vc from U>0 to UΔU>0 happens without any discontinuity. The saturation line vv also separates the regions between U>0 and U , but does not represent a line U=0. The internal-energy values of saturated vapor Uv and condensate Ui can be determined absolutely as functions of vapor pressure p and densities (M/V)v and (M/V)i , repectively, yielding the results Uiv, U=Ui+Uvc and U=Ui=Uv=0 at the critical point. Crossing the line Vv from U=Uv>0 to U=Uv+UiΔU=-Ui>0 to be removed from the particle system. The thermodynamic and quantum-mechanical formulations of the internal energy of a particle system only agree if both the macroscopic and microscopic energy scales have the same absolute energy reference value 0. Arguments for the energy reference value in the state of transition from bound to freely- moving particles in macroscopic classical and microscopic quantum particle systems are discussed. 展开更多
关键词 ENERGY Reference Value Zero in microscopic and macroscopic Particle Systems STATE of transition from Bound to Freely-Moving Particles INTERNAL ENERGY Regions in the STATE Chart of Gas CRITICAL Point and CRITICAL Isochor Loci of VANISHING INTERNAL ENERGY CRITICAL OPALESCENCE BEC Calculation of INTERNAL Energies of Saturated Liquid and Vapor
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部