期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of structural characteristics distribution on strength demand and ductility reduction factor of MDOF systems considering soil-structure interaction
1
作者 Behnoud Ganjavi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第2期205-220,共16页
It is known that structural stiffness and strength distributions have an important role in the seismic response of buildings. The effect of using different code-specified lateral load patterns on the seismic performan... It is known that structural stiffness and strength distributions have an important role in the seismic response of buildings. The effect of using different code-specified lateral load patterns on the seismic performance of fixed-base buildings has been investigated by researchers during the past two decades. However, no investigation has yet been carried out for the case of soil-structure systems. In the present study, through intensive parametric analyses of 21,600 linear and nonlinear MDOF systems and considering five different shear strength and stiffness distribution patterns, including three code-specified patterns as well as uniform and concentric patterns subjected to a group of earthquakes recorded on alluvium and soft soils, the effect of structural characteristics distribution on the strength demand and ductility reduction factor of MDOF fixed-base and soil-structure systems are parametrically investigated. The results of this study show that depending on the level of inelasticity, soil flexibility and number of degrees-of-freedoms (DOFs), structural characteristics distribution can significantly affect the strength demand and ductility reduction factor of MDOF systems. It is also found that at high levels of inelasticity, the ductility reduction factor of low-rise MDOF soil-structure systems could be significantly less than that of fixed-base structures and the reduction is less pronounced as the number of stories increases. 展开更多
关键词 soil-structure interaction MDOF systems structural characteristic distribution inelastic behavior strength demand ductility reduction factor
下载PDF
Response reduction factor of irregular RC buildings in Kathmandu valley 被引量:2
2
作者 Hemchandra Chaulagain Hugo Rodrigues +3 位作者 Enrico Spacone Ramesh Guragain Radhakrishna Mallik Humberto Varum 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第3期455-470,共16页
Most current seismic design includes the nonlinear response of a structure through a response reduction factor (R). This allows the designer to use a linear elastic force-based approach while accounting for nonlinea... Most current seismic design includes the nonlinear response of a structure through a response reduction factor (R). This allows the designer to use a linear elastic force-based approach while accounting for nonlinear behavior and deformation limits. In fact, the response reduction factor is used in modem seismic codes to scale down the elastic response of a structure. This study focuses on estimating the actual 'R' value for engineered design/construction of reinforced concrete (RC) buildings in Kathmandu valley. The ductility and overstrength of representative RC buildings in Kathmandu are investigated. Nonlinear pushover analysis was performed on structural models in order to evaluate the seismic performance of buildings. Twelve representative engineered irregular buildings with a variety of characteristics located in the Kathmandu valley were selected and studied. Furthermore, the effects of overstrength on the ductility factor, beam column capacity ratio on the building ductility, and load path on the response reduction factor, are examined. Finally, the results are further analyzed and compared with different structural parameters of the buildings. 展开更多
关键词 RC buildings pushover analysis ductility reduction factor OVERSTRENGTH response reduction factor
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部