Alpine revegetated dunes have been barely researched in terms of morphological change and migration within its regional aeolian environments. To reveal the sand-fixing and land-reforming mechanisms of artificial veget...Alpine revegetated dunes have been barely researched in terms of morphological change and migration within its regional aeolian environments. To reveal the sand-fixing and land-reforming mechanisms of artificial vegetation, we observed the morphology and migration of four dunes with four revegetated types(Hippophae rhamnoides Linn., Salix cheilophila Schneid., Populus simonii Carr., and Artemisia desertorum Spreng.) using unpiloted aerial vehicle images and GPS(global positioning system) mapping in 2009 and 2018. Spatial analysis of GIS(geographic information system) revealed that the revegetated dunes exhibited a steady progression from barchan dune shapes to dome or ribbons shapes mainly through knap planation, wing amplification, and slope symmetrization. Generally, conditions of northern aspects, smaller slope degree, and larger altitude of unvegetated dunes would suffer more serious wind erosion. The southward movement of dune wings with a migration speed of 2.0–5.0 m/a and the alternating motion of sand ridges in eastwestern directions led greater stability in revegetated dunes. The moving distances of revegetated dunes remarkably changed in patterns of quadratic or linear function with depositional depth. Compared with unvegetated dunes, the near-surface wind velocity of revegetated dunes decreased by 20%–30%, which led to heavy accumulation in low-flat dunes and erosion in high-steep dunes, but all vegetation species produced obvious sand-fixing benefits(100%–450% and 3%–140% in the lower and higher dune scales of revegetated dunes, respectively) with decreasing sand transport rates and increasing coverages. In practice, the four vegetation species effectively anchored mobile dunes by adapting to regional aeolian environment. However, future revegetation efforts should consider optimizing dune morphology by utilizing H. rhamnoides as a pioneer plant, S. cheilophila and P.microphylla in windward and northward dune positions, and A. desertorum in a sand accumulative southward position. Also, we should adjust afforestation structure and replant some shrub or herbs in the higher revegetated dunes to prevent fixed dune activation and southward expansion.展开更多
Measurements of topography at the segment of bifurcation between the South Channel and North Channel in the Yangtze Estuary were conducted, and a new type of subaqueous dune was discovered. This structure, newly defin...Measurements of topography at the segment of bifurcation between the South Channel and North Channel in the Yangtze Estuary were conducted, and a new type of subaqueous dune was discovered. This structure, newly defined as a catenary-bead dune, consists of a catenary dune and its associated elliptical pit bedform. Based on this finding, the nomenclature of "morphology of dune associated with accompanying bedform" is first proposed. The measured data indicate a mean height and wavelength of 1.29 m and 31.89 m, respectively; wavelength/height ratio(L/H) of 14 to 56; and elliptical pits of mean and maximum depth 0.98 m and 1.98 m, respectively. Flow information was obtained using an Acoustic Doppler Current Profile(ADCP), and the bed material components were gathered with a bottom sampler. The results show mean flood and ebb velocities of 0.27 and 0.78 m s?1, respectively, with shorter duration of flood tide than ebb tide. The silt, very fine sand, and fine sand fractions were within the ranges 21.6–23.4%, 28.2–32.2%, and 39.7–41.6%, respectively, revealing complex bed material composition. Water depth at the study site varies from 13 to 17 m. This finding will enrich the study of dunes and provide important data for geomorphological research. Moreover, the results are significant for engineering applications to estuaries.展开更多
基金funded by the Jiangxi Provincial Natural Science Foundation (20202BABL213028)the Open Project of the State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, China (2022-KF-07)the Doctoral Scientific Research Foundation of East China University of Technology (2019052, 2019045)。
文摘Alpine revegetated dunes have been barely researched in terms of morphological change and migration within its regional aeolian environments. To reveal the sand-fixing and land-reforming mechanisms of artificial vegetation, we observed the morphology and migration of four dunes with four revegetated types(Hippophae rhamnoides Linn., Salix cheilophila Schneid., Populus simonii Carr., and Artemisia desertorum Spreng.) using unpiloted aerial vehicle images and GPS(global positioning system) mapping in 2009 and 2018. Spatial analysis of GIS(geographic information system) revealed that the revegetated dunes exhibited a steady progression from barchan dune shapes to dome or ribbons shapes mainly through knap planation, wing amplification, and slope symmetrization. Generally, conditions of northern aspects, smaller slope degree, and larger altitude of unvegetated dunes would suffer more serious wind erosion. The southward movement of dune wings with a migration speed of 2.0–5.0 m/a and the alternating motion of sand ridges in eastwestern directions led greater stability in revegetated dunes. The moving distances of revegetated dunes remarkably changed in patterns of quadratic or linear function with depositional depth. Compared with unvegetated dunes, the near-surface wind velocity of revegetated dunes decreased by 20%–30%, which led to heavy accumulation in low-flat dunes and erosion in high-steep dunes, but all vegetation species produced obvious sand-fixing benefits(100%–450% and 3%–140% in the lower and higher dune scales of revegetated dunes, respectively) with decreasing sand transport rates and increasing coverages. In practice, the four vegetation species effectively anchored mobile dunes by adapting to regional aeolian environment. However, future revegetation efforts should consider optimizing dune morphology by utilizing H. rhamnoides as a pioneer plant, S. cheilophila and P.microphylla in windward and northward dune positions, and A. desertorum in a sand accumulative southward position. Also, we should adjust afforestation structure and replant some shrub or herbs in the higher revegetated dunes to prevent fixed dune activation and southward expansion.
基金the National Natural Science Foundation of China (Grant No. 41476075)
文摘Measurements of topography at the segment of bifurcation between the South Channel and North Channel in the Yangtze Estuary were conducted, and a new type of subaqueous dune was discovered. This structure, newly defined as a catenary-bead dune, consists of a catenary dune and its associated elliptical pit bedform. Based on this finding, the nomenclature of "morphology of dune associated with accompanying bedform" is first proposed. The measured data indicate a mean height and wavelength of 1.29 m and 31.89 m, respectively; wavelength/height ratio(L/H) of 14 to 56; and elliptical pits of mean and maximum depth 0.98 m and 1.98 m, respectively. Flow information was obtained using an Acoustic Doppler Current Profile(ADCP), and the bed material components were gathered with a bottom sampler. The results show mean flood and ebb velocities of 0.27 and 0.78 m s?1, respectively, with shorter duration of flood tide than ebb tide. The silt, very fine sand, and fine sand fractions were within the ranges 21.6–23.4%, 28.2–32.2%, and 39.7–41.6%, respectively, revealing complex bed material composition. Water depth at the study site varies from 13 to 17 m. This finding will enrich the study of dunes and provide important data for geomorphological research. Moreover, the results are significant for engineering applications to estuaries.