Characteristics of microstructures of electroless Ni-P/Ni-W-P duplex coatings were investigated using SEM/EDX and XRD analysis techniques. Microhardness and wear behaviour of the coatings before and after laser crysta...Characteristics of microstructures of electroless Ni-P/Ni-W-P duplex coatings were investigated using SEM/EDX and XRD analysis techniques. Microhardness and wear behaviour of the coatings before and after laser crystallization were evaluated by measurements of hardnesses of coating surface and cross-section, and by unlubricated friction and wear experiments. The results indicate that it is possible to prepare electroless Ni-P/Ni-W-P duplex coatings by sequential immersion in two different plating baths. After laser crystallization, the microstructures of electroless Ni-P/Ni-W-P duplex coatings present the characteristics of higher degree of crystallization and larger grain size for outer layer Ni-W-P than inner Ni-P, but outer layer has a higher hardness. The wear resistance of laser-treated duplex coatings in a given process parameter conditions is superior to the as-plated ones. Laser treatment was performed directly in air without argon protection, which provides the possibility for application of industrialized production.展开更多
The thin and porous Fluoride Conversion Coating FCC with many cracks could not offer a significant improvement in corrosion resistance for Mg. Magnesium phosphate coating improves the corrosion resistance of Mg, good ...The thin and porous Fluoride Conversion Coating FCC with many cracks could not offer a significant improvement in corrosion resistance for Mg. Magnesium phosphate coating improves the corrosion resistance of Mg, good bioactivity, promotes cell viability and cyto-compatibility and exhibits antibacterial activity. However, rapid dissolution in Mg in acidic magnesium phosphate containing solutions leads to the development of an inhomogeneous coating. The present study attempts to prevent the excessive dissolution of Mg by forming a fluoride conversion coating as a pre-treatment in the first stage followed by deposition of magnesium phosphate coating in the second stage to develop magnesium fluoride-magnesium phosphate duplex coatings. The morphological features, structural characteristics, nature of functional groups, corrosion behavior in Hanks’ balanced salt solution and bioactivity in simulated body fluid are assessed to ascertain the suitability of the magnesium fluoride-magnesium phosphate duplex coating in controlling the rate of degradation of Mg and improving its bioactivity using uncoated Mg and fluoride conversion coated Mg as reference. The findings of the study reveal that the magnesium fluoride-magnesium phosphate duplex coating could offer an excellent corrosion resistance and improve the bioactivity of Mg.展开更多
Despite the great achievements made in improvement of wear resistance properties of aluminum alloys, their applications in heavy surface load-bearing are limited. Single coating is insufficient to produce the desired ...Despite the great achievements made in improvement of wear resistance properties of aluminum alloys, their applications in heavy surface load-bearing are limited. Single coating is insufficient to produce the desired combination of surface properties. These problems can be solved through the duplex coatings. The aim of the present study is to overview the research advances on processes of duplex coatings on (aluminum) alloys combined with micro plasma oxidation process and with other modern processes such as physical vapour deposition and plasma assisted chemical vapour deposition and also to evaluate the performance of micro plasma oxidation coatings in improving the load-bearing, friction and wear resistance properties of aluminum alloys in comparison with other coatings. Wherein, a more detailed presentation of the processes and their performances and disadvantages are given as well.展开更多
The carbon fibre was electroplated continuously by a duplex coating of Ni prior to Cu,and the composite made of this carbon fibre together with Cu matrix has been investigated,the compatibility between carbon fibre an...The carbon fibre was electroplated continuously by a duplex coating of Ni prior to Cu,and the composite made of this carbon fibre together with Cu matrix has been investigated,the compatibility between carbon fibre and duplex coating and flexural strength,linear thermal expansion coefficient and electric resistivity of the composite have also been examined.Owing to the transformation of face-centred cubic Cu-Ni solid solution in the duplex coating under high temperatures,both the nodulizing shrinkage of Cu coating alone and the graphitization of carbon fibre accelerated by single Ni coating with a consequent loss of strength were im- proved.Because of the dissolving of minute carbon fibre in the interfacial Cu-Ni solid solu- tion,the bonding strength and flexural strength of the composite were significantly increased, and the length of carbon fibre pulled out on the fracture surface was obviously reduced.The interface of the composite seems to be of the dissolution bonding.展开更多
In this work, a novel duplex Ni-P/Ni-Mo-P coating upon the aluminum(Al) substrate was synthesized via an electroless plating, i.e., the binary Ni-P coating as a transition layer and the ternary Ni-Mo-P coating on th...In this work, a novel duplex Ni-P/Ni-Mo-P coating upon the aluminum(Al) substrate was synthesized via an electroless plating, i.e., the binary Ni-P coating as a transition layer and the ternary Ni-Mo-P coating on the top. It was found that the duplex coating was of a high hardness,large elastic modulus,low porosity and excellent corrosion resistance. In addition, experimental results revealed that for a total 20 μm coating thickness, the duplex coating with a 7 μm of the Ni-Mo-P coating exhibited the best corrosion resistance in 0.5 mol/L sulfuric acid solution, which was attributed to its compact structure and low porosity. This duplex Ni-P/Ni-Mo-P coating with a thin ternary Ni-Mo-P layer is expected to solve the problem of low deposition rate of ternary alloy coating and thereby may expand applications of Al and its alloys in the fields of machine manufacture and corrosion environment.展开更多
The beginning of failure of a (ZrO2-7%Y2O3)/(Ni-22%Co-17%Cr-12.5%Al-0.6%Y) duplex andgraded coating systems on lnconel 617 and IN738LC in burner rig tests has been characterized.The test conditions are 40 s heating up...The beginning of failure of a (ZrO2-7%Y2O3)/(Ni-22%Co-17%Cr-12.5%Al-0.6%Y) duplex andgraded coating systems on lnconel 617 and IN738LC in burner rig tests has been characterized.The test conditions are 40 s heating up to 75O℃ substrate temperature followed by 80 s aircooling. Failure is considered at the appearance of the first bright spot during heating period.Stresses due to thermal expansion mismatch strains on cooling are the probable cause of life-limiting in this conditions of testing.展开更多
Single Ni-P and Ni-Mo-P coatings as well as duplex Ni-P/Ni-Mo-P coatings with the same compositions were prepared by electroless plating.The residual stresses of the coatings on the surface and cross sections were mea...Single Ni-P and Ni-Mo-P coatings as well as duplex Ni-P/Ni-Mo-P coatings with the same compositions were prepared by electroless plating.The residual stresses of the coatings on the surface and cross sections were measured by nanoindentation and AFM analysis,and the corrosion behaviour of the coatings in10%HCl solution was evaluated by electrochemical methods,to establish the correlation between the residual stresses and corrosion behaviour of the coatings.The results showed that the single Ni-P and duplex Ni-P/Ni-Mo-P coatings presented residual compressive stresses of241and206MPa respectively,while the single Ni-Mo-P coating exhibited a residual tensile stress of257MPa.The residual compressive stress impeded the growth of the pre-existing porosity in the coatings,protecting the integrity of the coating.The duplex Ni-P/Ni-Mo-P coatings had better corrosion resistance than their respective single coating.In addition,the stress states affect the corrosive form of coatings.展开更多
Over the past years, great achievements have been made in the development of coating technologies for surface improvement of aluminum alloys. Despite these achievements, the role in the market strongly depends on the ...Over the past years, great achievements have been made in the development of coating technologies for surface improvement of aluminum alloys. Despite these achievements, the role in the market strongly depends on the ability of surface coating technology under technical and economic considerations to meet the increased demands for heavy tribological applications of aluminum alloys. Microplasma oxidation (MPO) technology has recently been studied as a novel and effective means to provide thick and hard ceramic coating with improved properties such as excellent load-bearing and wear resistance properties on aluminum alloys. The present work covers the evaluation of the performances of current single and duplex coatings combining MPO, physical vapor deposition (PVD), and plasma assisted chemical vapor deposition (PACVD) coatings on aluminum alloys. It suggests that the MPO coating is a promising candidate for design engineers to apply aluminum alloys to heavy load-bearing applications. The prospective future for the research on MPO coatings is introduced as well.展开更多
In this work hollow rectangular microtubes of polypyrrole(PPy)films were potentiostatically electrodeposited on magnesium alloy AZ91D in salicylate solution.The substrate was previously anodized under potentiostatic c...In this work hollow rectangular microtubes of polypyrrole(PPy)films were potentiostatically electrodeposited on magnesium alloy AZ91D in salicylate solution.The substrate was previously anodized under potentiostatic conditions in a molybdate solution in order to improve the adherence of polymer.Finally the duplex film was modified by the incorporation of silver species.The obtained coatings were characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD)and X-ray photoelectron spectroscopies(XPS)and the antimicrobial activity against the bacteria Escherichia coli was evaluated.The corrosion protection properties of the coatings were examined in Ringer solution by monitoring the open circuit potential,polarization techniques and electrochemical spectroscopy(EIS).The duplex coating presents an improved anticorrosive performance with respect to the PPy film.The best results concerning corrosion protection and antibacterial activity were obtained for the silver-modified composite coating.展开更多
A new laboratory evaluation method for the coating blade was developed, and the tribological properties of coating blades with different Ti-based coatings were studied by UMT-2 tribometer. Comparison between the areas...A new laboratory evaluation method for the coating blade was developed, and the tribological properties of coating blades with different Ti-based coatings were studied by UMT-2 tribometer. Comparison between the areas of scratches before and after the cutting experiment was used to evaluate the cutting performance of the blades. Results showed that friction coefficient of TiA1CrN/TiA1N coating was significantly lower than that of TiA1SiN coating. Analysis of the worn surface revealed that the TiA1SiN and TiAICrN/TiA1N coatings in the dry turning process exhibited sign of inhornogeneous adhesive wear and abrasive wear. TiA1CrN/TiA1N coating has a longer working life and better anti-wear property because of its duplex coating.展开更多
基金Project (ZR2011EMM014) supported by the Natural Science Foundation of Shandong Province, China
文摘Characteristics of microstructures of electroless Ni-P/Ni-W-P duplex coatings were investigated using SEM/EDX and XRD analysis techniques. Microhardness and wear behaviour of the coatings before and after laser crystallization were evaluated by measurements of hardnesses of coating surface and cross-section, and by unlubricated friction and wear experiments. The results indicate that it is possible to prepare electroless Ni-P/Ni-W-P duplex coatings by sequential immersion in two different plating baths. After laser crystallization, the microstructures of electroless Ni-P/Ni-W-P duplex coatings present the characteristics of higher degree of crystallization and larger grain size for outer layer Ni-W-P than inner Ni-P, but outer layer has a higher hardness. The wear resistance of laser-treated duplex coatings in a given process parameter conditions is superior to the as-plated ones. Laser treatment was performed directly in air without argon protection, which provides the possibility for application of industrialized production.
基金University Grand Commission(UGC)for providing a research fellowship to support this research program under the non-net category。
文摘The thin and porous Fluoride Conversion Coating FCC with many cracks could not offer a significant improvement in corrosion resistance for Mg. Magnesium phosphate coating improves the corrosion resistance of Mg, good bioactivity, promotes cell viability and cyto-compatibility and exhibits antibacterial activity. However, rapid dissolution in Mg in acidic magnesium phosphate containing solutions leads to the development of an inhomogeneous coating. The present study attempts to prevent the excessive dissolution of Mg by forming a fluoride conversion coating as a pre-treatment in the first stage followed by deposition of magnesium phosphate coating in the second stage to develop magnesium fluoride-magnesium phosphate duplex coatings. The morphological features, structural characteristics, nature of functional groups, corrosion behavior in Hanks’ balanced salt solution and bioactivity in simulated body fluid are assessed to ascertain the suitability of the magnesium fluoride-magnesium phosphate duplex coating in controlling the rate of degradation of Mg and improving its bioactivity using uncoated Mg and fluoride conversion coated Mg as reference. The findings of the study reveal that the magnesium fluoride-magnesium phosphate duplex coating could offer an excellent corrosion resistance and improve the bioactivity of Mg.
文摘Despite the great achievements made in improvement of wear resistance properties of aluminum alloys, their applications in heavy surface load-bearing are limited. Single coating is insufficient to produce the desired combination of surface properties. These problems can be solved through the duplex coatings. The aim of the present study is to overview the research advances on processes of duplex coatings on (aluminum) alloys combined with micro plasma oxidation process and with other modern processes such as physical vapour deposition and plasma assisted chemical vapour deposition and also to evaluate the performance of micro plasma oxidation coatings in improving the load-bearing, friction and wear resistance properties of aluminum alloys in comparison with other coatings. Wherein, a more detailed presentation of the processes and their performances and disadvantages are given as well.
文摘The carbon fibre was electroplated continuously by a duplex coating of Ni prior to Cu,and the composite made of this carbon fibre together with Cu matrix has been investigated,the compatibility between carbon fibre and duplex coating and flexural strength,linear thermal expansion coefficient and electric resistivity of the composite have also been examined.Owing to the transformation of face-centred cubic Cu-Ni solid solution in the duplex coating under high temperatures,both the nodulizing shrinkage of Cu coating alone and the graphitization of carbon fibre accelerated by single Ni coating with a consequent loss of strength were im- proved.Because of the dissolving of minute carbon fibre in the interfacial Cu-Ni solid solu- tion,the bonding strength and flexural strength of the composite were significantly increased, and the length of carbon fibre pulled out on the fracture surface was obviously reduced.The interface of the composite seems to be of the dissolution bonding.
基金supported financially by the National Natural Science Foundation of China (No.11174227)the National R&D Infrastructure and Facility Development Program of China (No.2005DKA10400)+1 种基金the Scientific Research Project of Liaoning Province Department of Education (No.L2010396)the Chinese Universities Scientific Fund
文摘In this work, a novel duplex Ni-P/Ni-Mo-P coating upon the aluminum(Al) substrate was synthesized via an electroless plating, i.e., the binary Ni-P coating as a transition layer and the ternary Ni-Mo-P coating on the top. It was found that the duplex coating was of a high hardness,large elastic modulus,low porosity and excellent corrosion resistance. In addition, experimental results revealed that for a total 20 μm coating thickness, the duplex coating with a 7 μm of the Ni-Mo-P coating exhibited the best corrosion resistance in 0.5 mol/L sulfuric acid solution, which was attributed to its compact structure and low porosity. This duplex Ni-P/Ni-Mo-P coating with a thin ternary Ni-Mo-P layer is expected to solve the problem of low deposition rate of ternary alloy coating and thereby may expand applications of Al and its alloys in the fields of machine manufacture and corrosion environment.
文摘The beginning of failure of a (ZrO2-7%Y2O3)/(Ni-22%Co-17%Cr-12.5%Al-0.6%Y) duplex andgraded coating systems on lnconel 617 and IN738LC in burner rig tests has been characterized.The test conditions are 40 s heating up to 75O℃ substrate temperature followed by 80 s aircooling. Failure is considered at the appearance of the first bright spot during heating period.Stresses due to thermal expansion mismatch strains on cooling are the probable cause of life-limiting in this conditions of testing.
基金Project(ZR2011EMM014)supported by Shandong Provincial Natural Science Foundation of China
文摘Single Ni-P and Ni-Mo-P coatings as well as duplex Ni-P/Ni-Mo-P coatings with the same compositions were prepared by electroless plating.The residual stresses of the coatings on the surface and cross sections were measured by nanoindentation and AFM analysis,and the corrosion behaviour of the coatings in10%HCl solution was evaluated by electrochemical methods,to establish the correlation between the residual stresses and corrosion behaviour of the coatings.The results showed that the single Ni-P and duplex Ni-P/Ni-Mo-P coatings presented residual compressive stresses of241and206MPa respectively,while the single Ni-Mo-P coating exhibited a residual tensile stress of257MPa.The residual compressive stress impeded the growth of the pre-existing porosity in the coatings,protecting the integrity of the coating.The duplex Ni-P/Ni-Mo-P coatings had better corrosion resistance than their respective single coating.In addition,the stress states affect the corrosive form of coatings.
文摘Over the past years, great achievements have been made in the development of coating technologies for surface improvement of aluminum alloys. Despite these achievements, the role in the market strongly depends on the ability of surface coating technology under technical and economic considerations to meet the increased demands for heavy tribological applications of aluminum alloys. Microplasma oxidation (MPO) technology has recently been studied as a novel and effective means to provide thick and hard ceramic coating with improved properties such as excellent load-bearing and wear resistance properties on aluminum alloys. The present work covers the evaluation of the performances of current single and duplex coatings combining MPO, physical vapor deposition (PVD), and plasma assisted chemical vapor deposition (PACVD) coatings on aluminum alloys. It suggests that the MPO coating is a promising candidate for design engineers to apply aluminum alloys to heavy load-bearing applications. The prospective future for the research on MPO coatings is introduced as well.
基金CONICET(PIP-112-201101-00055),ANPCYT(PICT-2012-0141)and Universidad Nacional del Sur(PGI 24/M127),Bahía Blanca,Argentina are acknowledged for financial support
文摘In this work hollow rectangular microtubes of polypyrrole(PPy)films were potentiostatically electrodeposited on magnesium alloy AZ91D in salicylate solution.The substrate was previously anodized under potentiostatic conditions in a molybdate solution in order to improve the adherence of polymer.Finally the duplex film was modified by the incorporation of silver species.The obtained coatings were characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD)and X-ray photoelectron spectroscopies(XPS)and the antimicrobial activity against the bacteria Escherichia coli was evaluated.The corrosion protection properties of the coatings were examined in Ringer solution by monitoring the open circuit potential,polarization techniques and electrochemical spectroscopy(EIS).The duplex coating presents an improved anticorrosive performance with respect to the PPy film.The best results concerning corrosion protection and antibacterial activity were obtained for the silver-modified composite coating.
基金supported by the National Natural Science Foundation of China(Grant No.51075308)
文摘A new laboratory evaluation method for the coating blade was developed, and the tribological properties of coating blades with different Ti-based coatings were studied by UMT-2 tribometer. Comparison between the areas of scratches before and after the cutting experiment was used to evaluate the cutting performance of the blades. Results showed that friction coefficient of TiA1CrN/TiA1N coating was significantly lower than that of TiA1SiN coating. Analysis of the worn surface revealed that the TiA1SiN and TiAICrN/TiA1N coatings in the dry turning process exhibited sign of inhornogeneous adhesive wear and abrasive wear. TiA1CrN/TiA1N coating has a longer working life and better anti-wear property because of its duplex coating.