Control of dust in underground coal mines is critical for mitigating both safety and health hazards.For decades,the National Institute of Occupational Safety and Health(NIOSH)has led research to evaluate the effective...Control of dust in underground coal mines is critical for mitigating both safety and health hazards.For decades,the National Institute of Occupational Safety and Health(NIOSH)has led research to evaluate the effectiveness of various dust control technologies in coal mines.Recent studies have included the evaluation of auxiliary scrubbers to reduce respirable dust downstream of active mining and the use of canopy air curtains(CACs)to reduce respirable dust in key operator positions.While detailed dust characterization was not a focus of such studies,this is a growing area of interest.Using preserved filter samples from three previous NIOSH studies,the current work aims to explore the effect of two different scrubbers(one wet and one dry)and a roof bolter CAC on respirable dust composition and particle size distribution.For this,the preserved filter samples were analyzed by thermogravimetric analysis and/or scanning electron microscopy with energy dispersive X-ray.Results indicate that dust composition was not appreciably affected by either scrubber or the CAC.However,the wet scrubber and CAC appeared to decrease the overall particle size distribution.Such an effect of the dry scrubber was not consistently observed,but this is probably related to the particular sampling location downstream of the scrubber which allowed for significant mixing of the scrubber exhaust and other return air.Aside from the insights gained with respect to the three specific dust control case studies revisited here,this work demonstrates the value of preserved dust samples for follow-up investigation more broadly.展开更多
Single-fuid nozzles and dual-fuid nozzles are the two typical jet crushing methods used in spray dust reduction. To distinguish the atomization mechanism of single-fuid and dual-fuid nozzles and improve dust control e...Single-fuid nozzles and dual-fuid nozzles are the two typical jet crushing methods used in spray dust reduction. To distinguish the atomization mechanism of single-fuid and dual-fuid nozzles and improve dust control efciency at the coal mining faces, the atomization characteristics and dust reduction performance of the two nozzles were quantitatively compared. Results of experiments show that, as water supply pressure increased, the atomization angle of the swirl pressure nozzle reaches a maximum of 62° at 6 MPa and then decreases, but its droplet size shows an opposite trend with a minimum of 41.7 μm. The water supply pressure helps to improve the droplet size and the atomization angle of the internal mixing air–liquid nozzle, while the air supply pressure has a suppressive efect for them. When the water supply pressure is 0.2 MPa and the air supply pressure reaches 0.4 MPa, the nozzle obtains the smallest droplet size which is 10% smaller than the swirl pressure nozzle. Combined with the dust reduction experimental results, when the water consumption at the working surface is not limited, using the swirl pressure nozzle will achieve a better dust reduction efect. However, the internal mixing air–liquid nozzle can achieve better and more economical dust reduction performance in working environments where water consumption is limited.展开更多
Accumulation of float coal dust(FCD)in underground mines is an explosion hazard that affects all underground coal mine workers.While this hazard is addressed by the application of rock dust,inadequate rock dusting pra...Accumulation of float coal dust(FCD)in underground mines is an explosion hazard that affects all underground coal mine workers.While this hazard is addressed by the application of rock dust,inadequate rock dusting practices can leave miners exposed to an explosion risk.Researchers at the National Institute for Occupational Safety and Health(NIOSH)have focused on developing a water curtain that removes FCD from the airstream,thereby reducing the buildup of FCD in mine airways.In this study,the number and spacing of the active sprays in the water curtain were varied to determine the optimal configuration to obtain peak knockdown efficiency(KE)while minimizing water consumption.展开更多
To solve the problem of excavation face dust control,the theory of dust removal after collection was put forward.Through a large number of theoretical and experimental researches,a new wind screen dust-collection syst...To solve the problem of excavation face dust control,the theory of dust removal after collection was put forward.Through a large number of theoretical and experimental researches,a new wind screen dust-collection system which was applied to comprehen- sive excavation face was developed.To set a wind dam in jet stream box,achieve the function of multi-stage and multiple-level regulation,lots of experimentation was carried out to obtain higher jet stream velocity with the minimum loss of energy.Experiments show that the slit width in the exports of wind screen dust-collection system should be 10 to 15 mm.For the general excavation roadway,after wind attenuation,the velocity can be greater than 3 m/s at the roof which meets the requirements of respirable dust control.展开更多
In order to effectively control the dust in the underground coal mine,this study proposes and develops a new technology for dust control by foam,and briefly demonstrates the advantage of the foam technology for dust c...In order to effectively control the dust in the underground coal mine,this study proposes and develops a new technology for dust control by foam,and briefly demonstrates the advantage of the foam technology for dust control,such as the good isolation performance,large contact area,high wetting ability,strong adhesion and so on.Besides,the details of the technology are introduced,including the foam agent,foam generator,and foam production process.Then the paper studies the relationship between the foaming agent concentration and liquid surface tension,and explains the principle of the foam generator.The technology is applied in heading face.The application results show that the foam has a remarkable effect on dust control in underground coal mines.展开更多
Mine dust is one of the main hazards in underground longwall mines worldwide.In order to solve the mine dust problem,a significant number of studies have been carried out regarding longwall mine dust control,both in C...Mine dust is one of the main hazards in underground longwall mines worldwide.In order to solve the mine dust problem,a significant number of studies have been carried out regarding longwall mine dust control,both in China and Australia.This paper presents a comparative study of dust control practices in Chinese and Australian longwall mines,with particular references to statutory limits,dust monitoring methods and dust management practices,followed by a brief discussion on the research status of longwall mine dust control in both countries.The study shows that water infusion,face ventilation controls,water sprays,and deep and wet cutting in longwall shearer operations are commonly practiced in almost all underground longwall mines and that both Chinese and Australian longwall mine dust control practices have their own advantages and disadvantages.It is concluded that there is a need for further development and innovative design of more effective dust mitigation products or systems despite the development of various dust control technologies.Based on the examinations and discussions,the authors have made some recommendations for further research and development in dust control in longwall mines.It is hoped that this comparative study will provide beneficial guidance for scholars and engineers who are engaging in longwall mine dust control research and practice.展开更多
In order to improve the utilization rate of foam,an arc jet nozzle was designed for precise dust control.Through theoretical analysis,the different demands of foam were compared amongst arc jets,flat jets and full con...In order to improve the utilization rate of foam,an arc jet nozzle was designed for precise dust control.Through theoretical analysis,the different demands of foam were compared amongst arc jets,flat jets and full cone jets when the dust source was covered identically by foam.It is proved that foam consumption was least when an arc jet was used.Foam production capability of an arc jet nozzle under different conditions was investigated through experiments.The results show that with the gas liquid ratio(GLR)increasing,the spray state of an arc jet nozzle presents successively water jet,foam jet and mist.Under a reasonable working condition range of foam production and a fixed GLR,foam production quantity increases at first,and then decreases with the increase of liquid supply quantity.When the inner diameter of the nozzle is 14 mm,the best GLR is 30 and the optimum liquid supply quantity is0.375 m^3/h.The results of field experiments show that the total dust and respirable dust suppression efficiency of arc jet nozzles is 85.8%and 82.6%respectively,which are 1.39 and 1.37 times higher than the full cone nozzles and 1.20 and 1.19 times higher than the fiat nozzles.展开更多
This work proposes a vibrating mesh screen as an alternative to the static mesh screen currently used in conventional flooded-bed dust scrubbers for removing airborne coal mine dust in the continuous mining environmen...This work proposes a vibrating mesh screen as an alternative to the static mesh screen currently used in conventional flooded-bed dust scrubbers for removing airborne coal mine dust in the continuous mining environment.Fundamental assessments suggest that a vibrating screen may improve the dust collection efficiency of scrubber systems and mitigate the clogging issues associated with the conventional design.To evaluate this hypothesis,computational fluid dynamics(CFD)simulations were carried out to assess the effects of vibration conditions(i.e.,frequency and amplitude)on the dust particle-mesh interaction and mesh wetting conditions,which are the two decisive factors in determining the dust collection efficiency.The results suggest that the vibrating mesh screen can enhance dust particle collision opportunities on the mesh and increase mesh wetted area as compared to the static mesh screen.The effects of mesh screen aperture,coal dust concentration,and spray nozzle flow rate on the performance of the vibrating mesh are also evaluated.Finally,a simplified three-phase flow simulation including airflow,dust particles,and water droplet spray is performed,and the results reflect a significant improvement of dust collection efficiency in the liquid-coated vibrating mesh screen.展开更多
Fine particulates instead of others create particulate pollution and they are easier to escape from almost all conventional collectors of low- or medium-efficiency. It is of practical significance to take full advanta...Fine particulates instead of others create particulate pollution and they are easier to escape from almost all conventional collectors of low- or medium-efficiency. It is of practical significance to take full advantages of particle coagulation by electrostatic forces to upgrade the collertors' performance. This paper investigates the main mechanisms of coagulation, all possible electrostatic forces existing in the collectors and their effects on the particle coagulation. To make particle kinetic coagulation electrostatically enhanced be a step of the conventional collectors. operations,certain conditions should be created through some medifications of the collectors. Based on that ,the authors suggest that a precharger electro-cyclone technique be applied to improve the performance of common cyclones still widely used in many places. And a preliminary semi-industrial test has been carried out at Jiawang Power Station, Xuzhou, Jiangsu Province, and the results show that the modified cyclone increases its efficiency from about 80% to 92~94%.展开更多
Prolonged exposure to coal dust leads to various lung disorders, including incurable coal workers’ pneumoconiosis (CWP), and endangers miners’ health in underground mines. This article summarizes the latest research...Prolonged exposure to coal dust leads to various lung disorders, including incurable coal workers’ pneumoconiosis (CWP), and endangers miners’ health in underground mines. This article summarizes the latest research progress in dust control technology, including chemical dust suppressants, foam dust removal, ultrasonic atomization, magnetized water dust suppression, double curtains of wind and fog, biological nano-film, and emerging microbial dust suppressants in the field of dust. The actual application compares and analyzes the advantages and disadvantages of different dust removal technologies. The current three directions of mine dust prevention and control are pointed out: the prevention and control of respirable dust, hydrophobic dust, and secondary dust, and the prospects for future development trends. Given the treatment of respirable dust, it is necessary to strengthen the research on the dust generation mechanism under different working conditions and to explore the migration and settlement laws of respirable dust by constructing a numerical model of dust dynamics;for the treatment of hydrophobic dust, further research on the microphysical and chemical properties of coal dust is needed. The relationship between wettability and continuously optimizing the wetting agent;for the prevention and control of secondary dust in coal mines, emerging microbial dust suppression technologies need to be developed to explore the micro-action between microorganisms and coal dust molecules to achieve green prevention and control of dust.展开更多
In the present study,a numerical simulation method was adopted in order to examine the characteristics of dust dispersion during continuous dust release periods(CRP)and stop dust release periods(SRP).The purpose was t...In the present study,a numerical simulation method was adopted in order to examine the characteristics of dust dispersion during continuous dust release periods(CRP)and stop dust release periods(SRP).The purpose was to analyze the dust distributions and migration actions around road-header drivers in excavation roadways,and then determine effective dust control measures for underground coal mines.This study’s simulation results showed that the dust concentrations continuously increased,and then gradually reached a stability level during the CRP.During that time,the locations of the drivers were always at the intersection of the original migration dust and the backflow dust,and the drivers were invaded by these two strands dust.However,during the SRP,the dust concentrations gradually decreased under the actions of the roadway ventilation.Besides,obvious backflow phenomena were observed around the road-header during the SRP.The locations of the drivers were still within the backflow paths of the high dust concentrations.At the present time,dust separation and extraction systems have been implemented in coal mines,including vacuuming and air knife devices,which are designed to control the dust around the road-header drivers.The field applications of these systems were conducted in the 26 mechanized excavation faces of the Zhangcun Coal Mine.The results revealed that the use of these dust removal systems could effectively reduce the dust concentrations around the road-header drivers.In the present study,the dust removal rates during the CRP and SRP were determined to reach up to 88.7% and 94.6%,respectively.Therefore,the results of this research study provided effective theoretical guidance of the characteristics of dust distributions in coal mines,and introduced effective control methods for the hazardous dust concentrations around road-header drivers during the excavation process.展开更多
To relieve dust pollution in open cut coal mines and reduce the hazards of coal dust pollution to the environment and workers we optimized the synthesis of a dust suppressant by graft copolymerization of environmental...To relieve dust pollution in open cut coal mines and reduce the hazards of coal dust pollution to the environment and workers we optimized the synthesis of a dust suppressant by graft copolymerization of environmentally friendly soy protein isolate with methyl methacrylate.This dust suppressant could effectively control dust pollution in open cut coal mines. The optimized conditions for graft copolymerization in this case were determined by a response surface experiment designed with Design-Expert 10 software. Characterization by scanning electron microscopy showed a significant morphology change of the dust suppressant and the generation of a rigid and dense layer on its surface after interacting with coal dust.The layer exhibited good bonding and dust suppression performance. The analysis with Fourier-transform infrared spectroscopy revealed the appearance of new absorption peaks near 1300, 1072, and 1631 cm, demonstrating effective graft copolymerization. The proposed dust suppressant exhibited excellent wind erosion resistance, with a resistance that exceeded 90% at a wind speed of 6.5 m/sec. The successful graft copolymerization and effective bonding and curing of the dust suppressant on coal dust were experimentally verified.This is of great significance to the control of coal dust pollution.展开更多
基金CDC/NIOSH for funding this research(75D30119C05529)。
文摘Control of dust in underground coal mines is critical for mitigating both safety and health hazards.For decades,the National Institute of Occupational Safety and Health(NIOSH)has led research to evaluate the effectiveness of various dust control technologies in coal mines.Recent studies have included the evaluation of auxiliary scrubbers to reduce respirable dust downstream of active mining and the use of canopy air curtains(CACs)to reduce respirable dust in key operator positions.While detailed dust characterization was not a focus of such studies,this is a growing area of interest.Using preserved filter samples from three previous NIOSH studies,the current work aims to explore the effect of two different scrubbers(one wet and one dry)and a roof bolter CAC on respirable dust composition and particle size distribution.For this,the preserved filter samples were analyzed by thermogravimetric analysis and/or scanning electron microscopy with energy dispersive X-ray.Results indicate that dust composition was not appreciably affected by either scrubber or the CAC.However,the wet scrubber and CAC appeared to decrease the overall particle size distribution.Such an effect of the dry scrubber was not consistently observed,but this is probably related to the particular sampling location downstream of the scrubber which allowed for significant mixing of the scrubber exhaust and other return air.Aside from the insights gained with respect to the three specific dust control case studies revisited here,this work demonstrates the value of preserved dust samples for follow-up investigation more broadly.
基金funded by the National Natural Science Foundation of China(52274237)the Fundamental Research Funds for the Central Universities(2021ZDPYYQ007)+1 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX22_2656)the Graduate Innovation Program of China University of Mining and Technology(2022WLKXJ026).
文摘Single-fuid nozzles and dual-fuid nozzles are the two typical jet crushing methods used in spray dust reduction. To distinguish the atomization mechanism of single-fuid and dual-fuid nozzles and improve dust control efciency at the coal mining faces, the atomization characteristics and dust reduction performance of the two nozzles were quantitatively compared. Results of experiments show that, as water supply pressure increased, the atomization angle of the swirl pressure nozzle reaches a maximum of 62° at 6 MPa and then decreases, but its droplet size shows an opposite trend with a minimum of 41.7 μm. The water supply pressure helps to improve the droplet size and the atomization angle of the internal mixing air–liquid nozzle, while the air supply pressure has a suppressive efect for them. When the water supply pressure is 0.2 MPa and the air supply pressure reaches 0.4 MPa, the nozzle obtains the smallest droplet size which is 10% smaller than the swirl pressure nozzle. Combined with the dust reduction experimental results, when the water consumption at the working surface is not limited, using the swirl pressure nozzle will achieve a better dust reduction efect. However, the internal mixing air–liquid nozzle can achieve better and more economical dust reduction performance in working environments where water consumption is limited.
文摘Accumulation of float coal dust(FCD)in underground mines is an explosion hazard that affects all underground coal mine workers.While this hazard is addressed by the application of rock dust,inadequate rock dusting practices can leave miners exposed to an explosion risk.Researchers at the National Institute for Occupational Safety and Health(NIOSH)have focused on developing a water curtain that removes FCD from the airstream,thereby reducing the buildup of FCD in mine airways.In this study,the number and spacing of the active sprays in the water curtain were varied to determine the optimal configuration to obtain peak knockdown efficiency(KE)while minimizing water consumption.
基金the National Natural Science Foundation of China(f010206)
文摘To solve the problem of excavation face dust control,the theory of dust removal after collection was put forward.Through a large number of theoretical and experimental researches,a new wind screen dust-collection system which was applied to comprehen- sive excavation face was developed.To set a wind dam in jet stream box,achieve the function of multi-stage and multiple-level regulation,lots of experimentation was carried out to obtain higher jet stream velocity with the minimum loss of energy.Experiments show that the slit width in the exports of wind screen dust-collection system should be 10 to 15 mm.For the general excavation roadway,after wind attenuation,the velocity can be greater than 3 m/s at the roof which meets the requirements of respirable dust control.
基金The financial support by the National Natural Science Foundation of China (No.51104153)the Fundamental Research Fundsfor the Central Universities (No.2011QNB11)
文摘In order to effectively control the dust in the underground coal mine,this study proposes and develops a new technology for dust control by foam,and briefly demonstrates the advantage of the foam technology for dust control,such as the good isolation performance,large contact area,high wetting ability,strong adhesion and so on.Besides,the details of the technology are introduced,including the foam agent,foam generator,and foam production process.Then the paper studies the relationship between the foaming agent concentration and liquid surface tension,and explains the principle of the foam generator.The technology is applied in heading face.The application results show that the foam has a remarkable effect on dust control in underground coal mines.
基金supported by the Program for New Century Excellent Talents in University of China(No.NCET-10-0770)the financial support provided by the China Scholarship Council(Nos.201306425002&201406425048)the University of Wollongong to pursue study at the University of Wollongong as undergraduate visiting students
文摘Mine dust is one of the main hazards in underground longwall mines worldwide.In order to solve the mine dust problem,a significant number of studies have been carried out regarding longwall mine dust control,both in China and Australia.This paper presents a comparative study of dust control practices in Chinese and Australian longwall mines,with particular references to statutory limits,dust monitoring methods and dust management practices,followed by a brief discussion on the research status of longwall mine dust control in both countries.The study shows that water infusion,face ventilation controls,water sprays,and deep and wet cutting in longwall shearer operations are commonly practiced in almost all underground longwall mines and that both Chinese and Australian longwall mine dust control practices have their own advantages and disadvantages.It is concluded that there is a need for further development and innovative design of more effective dust mitigation products or systems despite the development of various dust control technologies.Based on the examinations and discussions,the authors have made some recommendations for further research and development in dust control in longwall mines.It is hoped that this comparative study will provide beneficial guidance for scholars and engineers who are engaging in longwall mine dust control research and practice.
基金supported by the National Natural Science Foundation of China(No.51474216)
文摘In order to improve the utilization rate of foam,an arc jet nozzle was designed for precise dust control.Through theoretical analysis,the different demands of foam were compared amongst arc jets,flat jets and full cone jets when the dust source was covered identically by foam.It is proved that foam consumption was least when an arc jet was used.Foam production capability of an arc jet nozzle under different conditions was investigated through experiments.The results show that with the gas liquid ratio(GLR)increasing,the spray state of an arc jet nozzle presents successively water jet,foam jet and mist.Under a reasonable working condition range of foam production and a fixed GLR,foam production quantity increases at first,and then decreases with the increase of liquid supply quantity.When the inner diameter of the nozzle is 14 mm,the best GLR is 30 and the optimum liquid supply quantity is0.375 m^3/h.The results of field experiments show that the total dust and respirable dust suppression efficiency of arc jet nozzles is 85.8%and 82.6%respectively,which are 1.39 and 1.37 times higher than the full cone nozzles and 1.20 and 1.19 times higher than the fiat nozzles.
基金sponsored by the Alpha Foundation for the Improvement of Mine Safety and Health, Inc. (Alpha Foundation)
文摘This work proposes a vibrating mesh screen as an alternative to the static mesh screen currently used in conventional flooded-bed dust scrubbers for removing airborne coal mine dust in the continuous mining environment.Fundamental assessments suggest that a vibrating screen may improve the dust collection efficiency of scrubber systems and mitigate the clogging issues associated with the conventional design.To evaluate this hypothesis,computational fluid dynamics(CFD)simulations were carried out to assess the effects of vibration conditions(i.e.,frequency and amplitude)on the dust particle-mesh interaction and mesh wetting conditions,which are the two decisive factors in determining the dust collection efficiency.The results suggest that the vibrating mesh screen can enhance dust particle collision opportunities on the mesh and increase mesh wetted area as compared to the static mesh screen.The effects of mesh screen aperture,coal dust concentration,and spray nozzle flow rate on the performance of the vibrating mesh are also evaluated.Finally,a simplified three-phase flow simulation including airflow,dust particles,and water droplet spray is performed,and the results reflect a significant improvement of dust collection efficiency in the liquid-coated vibrating mesh screen.
文摘Fine particulates instead of others create particulate pollution and they are easier to escape from almost all conventional collectors of low- or medium-efficiency. It is of practical significance to take full advantages of particle coagulation by electrostatic forces to upgrade the collertors' performance. This paper investigates the main mechanisms of coagulation, all possible electrostatic forces existing in the collectors and their effects on the particle coagulation. To make particle kinetic coagulation electrostatically enhanced be a step of the conventional collectors. operations,certain conditions should be created through some medifications of the collectors. Based on that ,the authors suggest that a precharger electro-cyclone technique be applied to improve the performance of common cyclones still widely used in many places. And a preliminary semi-industrial test has been carried out at Jiawang Power Station, Xuzhou, Jiangsu Province, and the results show that the modified cyclone increases its efficiency from about 80% to 92~94%.
文摘Prolonged exposure to coal dust leads to various lung disorders, including incurable coal workers’ pneumoconiosis (CWP), and endangers miners’ health in underground mines. This article summarizes the latest research progress in dust control technology, including chemical dust suppressants, foam dust removal, ultrasonic atomization, magnetized water dust suppression, double curtains of wind and fog, biological nano-film, and emerging microbial dust suppressants in the field of dust. The actual application compares and analyzes the advantages and disadvantages of different dust removal technologies. The current three directions of mine dust prevention and control are pointed out: the prevention and control of respirable dust, hydrophobic dust, and secondary dust, and the prospects for future development trends. Given the treatment of respirable dust, it is necessary to strengthen the research on the dust generation mechanism under different working conditions and to explore the migration and settlement laws of respirable dust by constructing a numerical model of dust dynamics;for the treatment of hydrophobic dust, further research on the microphysical and chemical properties of coal dust is needed. The relationship between wettability and continuously optimizing the wetting agent;for the prevention and control of secondary dust in coal mines, emerging microbial dust suppression technologies need to be developed to explore the micro-action between microorganisms and coal dust molecules to achieve green prevention and control of dust.
基金supported by the Shanxi Province Colleges and Universities Science and Technology Achievement Transformation and Cultivation Project(2020CG008).
文摘In the present study,a numerical simulation method was adopted in order to examine the characteristics of dust dispersion during continuous dust release periods(CRP)and stop dust release periods(SRP).The purpose was to analyze the dust distributions and migration actions around road-header drivers in excavation roadways,and then determine effective dust control measures for underground coal mines.This study’s simulation results showed that the dust concentrations continuously increased,and then gradually reached a stability level during the CRP.During that time,the locations of the drivers were always at the intersection of the original migration dust and the backflow dust,and the drivers were invaded by these two strands dust.However,during the SRP,the dust concentrations gradually decreased under the actions of the roadway ventilation.Besides,obvious backflow phenomena were observed around the road-header during the SRP.The locations of the drivers were still within the backflow paths of the high dust concentrations.At the present time,dust separation and extraction systems have been implemented in coal mines,including vacuuming and air knife devices,which are designed to control the dust around the road-header drivers.The field applications of these systems were conducted in the 26 mechanized excavation faces of the Zhangcun Coal Mine.The results revealed that the use of these dust removal systems could effectively reduce the dust concentrations around the road-header drivers.In the present study,the dust removal rates during the CRP and SRP were determined to reach up to 88.7% and 94.6%,respectively.Therefore,the results of this research study provided effective theoretical guidance of the characteristics of dust distributions in coal mines,and introduced effective control methods for the hazardous dust concentrations around road-header drivers during the excavation process.
基金supported by the National key R & D plan for the 13th five year plan (No. 2017YFC0805200)the Qingdao science and technology plan project (No.19-3-2-6-zhc)+1 种基金the Natural Science Foundation of Shandong Province (No. ZR2019MEE118)the National Natural Science Foundation of China (No. 51974179)。
文摘To relieve dust pollution in open cut coal mines and reduce the hazards of coal dust pollution to the environment and workers we optimized the synthesis of a dust suppressant by graft copolymerization of environmentally friendly soy protein isolate with methyl methacrylate.This dust suppressant could effectively control dust pollution in open cut coal mines. The optimized conditions for graft copolymerization in this case were determined by a response surface experiment designed with Design-Expert 10 software. Characterization by scanning electron microscopy showed a significant morphology change of the dust suppressant and the generation of a rigid and dense layer on its surface after interacting with coal dust.The layer exhibited good bonding and dust suppression performance. The analysis with Fourier-transform infrared spectroscopy revealed the appearance of new absorption peaks near 1300, 1072, and 1631 cm, demonstrating effective graft copolymerization. The proposed dust suppressant exhibited excellent wind erosion resistance, with a resistance that exceeded 90% at a wind speed of 6.5 m/sec. The successful graft copolymerization and effective bonding and curing of the dust suppressant on coal dust were experimentally verified.This is of great significance to the control of coal dust pollution.