This paper investigates the problem of hydrodynamic boundary layer flow and heat transfer of a dusty fluid over an unsteady stretching surface. The study considers the effects of frictional heating (viscous dissipat...This paper investigates the problem of hydrodynamic boundary layer flow and heat transfer of a dusty fluid over an unsteady stretching surface. The study considers the effects of frictional heating (viscous dissipation) and internal heat generation or ab- sorption. The basic equations governing the flow and heat transfer are reduced to a set of non-linear ordinary differential equations by applying suitable similarity transformations. The transformed equations are numerically solved by the Runge-Kutta-Fehlberg-45 order method. An analysis is carried out for two different cases of heating processes, namely, variable wall temperature (VWT) and variable heat flux (VHF). The effects of various physical parameters such as the magnetic parameter, the fluid-particle interaction pa- rameter, the unsteady parameter, the Prandtl number, the Eckert number, the number density of dust particles, and the heat source/sink parameter on velocity and temperature profiles are shown in several plots. The effects of the wall temperature gradient function and the wall temperature function are tabulated and discussed.展开更多
The couette dusty flow between two horizontal parallel porous flat plates with transverse sinusoidal injection of the dusty fluid at the stationary plate and its corresponding removal by constant suction through the p...The couette dusty flow between two horizontal parallel porous flat plates with transverse sinusoidal injection of the dusty fluid at the stationary plate and its corresponding removal by constant suction through the plate in uniform motion was analyzed. Due to this type of injection velocity the dusty flow becomes 3D. Perturbation method is used to obtain the expressions for the velocity and temperature fields of both the fluid and dust. It was found that the velocity profiles of both the fluid and dust in the main flow direction decrease with the increase of the mass concentration of the dust particles, and those in cross flow direction increase with an increase in the mass concentration of the dust particles up to the middle of the channel and thereafter decrease with increase in mass concentration of the dust particles. The skin friction components Tx and Tz in the main flow and transverse directions respectively increase with an increase in the mass concentration of the dust particles (or) injection parameter. The heat transfer coefficient decreases with the increase of the injection parameter and increases with the increase in the mass concentration of the dust particles.展开更多
Boundary layer flows and melting heat transfer of a Prandtl fluid over a stretching surface in the presence of fluid particle suspensions has been investigated.The converted set of boundary layer equations are solved ...Boundary layer flows and melting heat transfer of a Prandtl fluid over a stretching surface in the presence of fluid particle suspensions has been investigated.The converted set of boundary layer equations are solved numerically by RKF-45 method.Obtained numerical results for flow and heat transfer characteristics are deliberated for various physical parameters.Furthermore,the skin friction coefficient and Nusselt number are also presented in Tabs.2 and 3.It is found that the heat transfer rates are advanced in occurrence of nonlinear radiation compered to linear radiation.Also,it is noticed that velocity and temperature profile increases by increasing Prandtl parameter.展开更多
The magnetohydrodynamic(MHD)mixed convection flow past a shrinking vertical sheet with thermal radiation is considered.Besides,the effects of Cu-Al_(2)O_(3) nanoparticles and dust particles are considered.The similari...The magnetohydrodynamic(MHD)mixed convection flow past a shrinking vertical sheet with thermal radiation is considered.Besides,the effects of Cu-Al_(2)O_(3) nanoparticles and dust particles are considered.The similarity variables reduce the governing equations to the similarity equations,which are then solved numerically.The outcome shows that,for the shrinking case,the solutions are not unique.The rate of heat transfer and the friction factor enlarge with increasing the values of the copper nanoparticle volume fraction as well as the magnetic parameter.Meanwhile,the assisting flow and the rise of the thermal radiation reduce these quantities.Two solutions are found,and the boundary layer separation is dependent on the mixed convection parameter.展开更多
The present study is focused on the unsteady two-phase flow of blood in a cylindrical region.Blood is taken as a counter-example of Brinkman type fluid containing magnetic(dust)particles.The oscillating pressure gradi...The present study is focused on the unsteady two-phase flow of blood in a cylindrical region.Blood is taken as a counter-example of Brinkman type fluid containing magnetic(dust)particles.The oscillating pressure gradient has been considered because for blood flow it is necessary to investigate in the form of a diastolic and systolic pressure.The transverse magnetic field has been applied externally to the cylindrical tube to study its impact on both fluids as well as particles.The system of derived governing equations based on Navier Stoke’s,Maxwell and heat equations has been generalized using the well-known Caputo–Fabrizio(C–F)fractional derivative.The considered fractional model has been solved analytically using the joint Laplace and Hankel(L&H)transformations.The effect of various physical parameters such as fractional parameter,Gr,M andγ on blood and magnetic particles has been shown graphically using the Mathcad software.The fluid behaviour is thinner in fractional order as compared to the classical one.展开更多
This study scrutinizes the flow of engine oil-based suspended carbon nanotubes magnetohydrodynamics(MHD)hybrid nanofluid with dust particles over a thin moving needle following the Xue model.The analysis also incorpor...This study scrutinizes the flow of engine oil-based suspended carbon nanotubes magnetohydrodynamics(MHD)hybrid nanofluid with dust particles over a thin moving needle following the Xue model.The analysis also incorporates the effects of variable viscosity with Hall current.For heat transfer analysis,the effects of the Cattaneo–Christov theory and heat generation/absorption with thermal slip are integrated into the temperature equation.The Tiwari–Das nanofluid model is used to develop the envisioned mathematical model.Using similarity transformation,the governing equations for the flow are translated into ordinary differential equations.The bvp4c method based on Runge–Kutta is used,along with a shooting approach.Graphs are used to examine and depict the consequences of significant parameters on involved profiles.The results revealed that the temperature of the fluid and boundary layer thickness is diminished as the solid volume fraction is raised.Also,with an enhancement in the variable viscosity parameter,the velocity distribution becomes more pronounced.The results are substantiated by assessing them with an available study.展开更多
基金Project supported by the Major Research Project of Department of Science and Technology (DST)of New Delhi (No. SR/S4/MS:470/07,25-08-2008)
文摘This paper investigates the problem of hydrodynamic boundary layer flow and heat transfer of a dusty fluid over an unsteady stretching surface. The study considers the effects of frictional heating (viscous dissipation) and internal heat generation or ab- sorption. The basic equations governing the flow and heat transfer are reduced to a set of non-linear ordinary differential equations by applying suitable similarity transformations. The transformed equations are numerically solved by the Runge-Kutta-Fehlberg-45 order method. An analysis is carried out for two different cases of heating processes, namely, variable wall temperature (VWT) and variable heat flux (VHF). The effects of various physical parameters such as the magnetic parameter, the fluid-particle interaction pa- rameter, the unsteady parameter, the Prandtl number, the Eckert number, the number density of dust particles, and the heat source/sink parameter on velocity and temperature profiles are shown in several plots. The effects of the wall temperature gradient function and the wall temperature function are tabulated and discussed.
文摘The couette dusty flow between two horizontal parallel porous flat plates with transverse sinusoidal injection of the dusty fluid at the stationary plate and its corresponding removal by constant suction through the plate in uniform motion was analyzed. Due to this type of injection velocity the dusty flow becomes 3D. Perturbation method is used to obtain the expressions for the velocity and temperature fields of both the fluid and dust. It was found that the velocity profiles of both the fluid and dust in the main flow direction decrease with the increase of the mass concentration of the dust particles, and those in cross flow direction increase with an increase in the mass concentration of the dust particles up to the middle of the channel and thereafter decrease with increase in mass concentration of the dust particles. The skin friction components Tx and Tz in the main flow and transverse directions respectively increase with an increase in the mass concentration of the dust particles (or) injection parameter. The heat transfer coefficient decreases with the increase of the injection parameter and increases with the increase in the mass concentration of the dust particles.
文摘Boundary layer flows and melting heat transfer of a Prandtl fluid over a stretching surface in the presence of fluid particle suspensions has been investigated.The converted set of boundary layer equations are solved numerically by RKF-45 method.Obtained numerical results for flow and heat transfer characteristics are deliberated for various physical parameters.Furthermore,the skin friction coefficient and Nusselt number are also presented in Tabs.2 and 3.It is found that the heat transfer rates are advanced in occurrence of nonlinear radiation compered to linear radiation.Also,it is noticed that velocity and temperature profile increases by increasing Prandtl parameter.
基金Universiti Teknikal Malaysia Melaka and Universiti Kebangsaan Malaysia(No.DIP-2020-001)for funds。
文摘The magnetohydrodynamic(MHD)mixed convection flow past a shrinking vertical sheet with thermal radiation is considered.Besides,the effects of Cu-Al_(2)O_(3) nanoparticles and dust particles are considered.The similarity variables reduce the governing equations to the similarity equations,which are then solved numerically.The outcome shows that,for the shrinking case,the solutions are not unique.The rate of heat transfer and the friction factor enlarge with increasing the values of the copper nanoparticle volume fraction as well as the magnetic parameter.Meanwhile,the assisting flow and the rise of the thermal radiation reduce these quantities.Two solutions are found,and the boundary layer separation is dependent on the mixed convection parameter.
文摘The present study is focused on the unsteady two-phase flow of blood in a cylindrical region.Blood is taken as a counter-example of Brinkman type fluid containing magnetic(dust)particles.The oscillating pressure gradient has been considered because for blood flow it is necessary to investigate in the form of a diastolic and systolic pressure.The transverse magnetic field has been applied externally to the cylindrical tube to study its impact on both fluids as well as particles.The system of derived governing equations based on Navier Stoke’s,Maxwell and heat equations has been generalized using the well-known Caputo–Fabrizio(C–F)fractional derivative.The considered fractional model has been solved analytically using the joint Laplace and Hankel(L&H)transformations.The effect of various physical parameters such as fractional parameter,Gr,M andγ on blood and magnetic particles has been shown graphically using the Mathcad software.The fluid behaviour is thinner in fractional order as compared to the classical one.
基金the Taif University research supporting project number(TURSP-2020/304),Taif University,Saudi Arabia。
文摘This study scrutinizes the flow of engine oil-based suspended carbon nanotubes magnetohydrodynamics(MHD)hybrid nanofluid with dust particles over a thin moving needle following the Xue model.The analysis also incorporates the effects of variable viscosity with Hall current.For heat transfer analysis,the effects of the Cattaneo–Christov theory and heat generation/absorption with thermal slip are integrated into the temperature equation.The Tiwari–Das nanofluid model is used to develop the envisioned mathematical model.Using similarity transformation,the governing equations for the flow are translated into ordinary differential equations.The bvp4c method based on Runge–Kutta is used,along with a shooting approach.Graphs are used to examine and depict the consequences of significant parameters on involved profiles.The results revealed that the temperature of the fluid and boundary layer thickness is diminished as the solid volume fraction is raised.Also,with an enhancement in the variable viscosity parameter,the velocity distribution becomes more pronounced.The results are substantiated by assessing them with an available study.