A great amount of work addressed methods for predicting the battery lifetime in wireless sensor systems. In spite of these efforts, the reported experimental results demonstrate that the duty-cycle current average met...A great amount of work addressed methods for predicting the battery lifetime in wireless sensor systems. In spite of these efforts, the reported experimental results demonstrate that the duty-cycle current average method, which is widely used to this aim, fails in accurately estimating the battery life time of most of the presented wireless sensor system applications. The aim of this paper is to experimentally assess the duty-cycle current average method in order to give more effective insight on the effectiveness of the method. An electronic metering system, based on a dedicated PCB, has been designed and developed to experimentally measure node current consumption profiles and charge extracted from the battery in two selected case studies. A battery lifetime measurement (during 30 days) has been carried out. Experimental results have been assessed and compared with estimations given by using the duty-cycle current average method. Based on the measurement results, we show that the assumptions on which the method is based do not hold in real operating cases. The rationality of the duty-cycle current average method needs reconsidering.展开更多
Abstract Tidal current energy is renewable and sustainable, which is a promising altemative energy resource for the future elec- tricity supply. The straight-bladed vertical-axis turbine is regarded as a useful tool t...Abstract Tidal current energy is renewable and sustainable, which is a promising altemative energy resource for the future elec- tricity supply. The straight-bladed vertical-axis turbine is regarded as a useful tool to capture the tidal current energy especially under low-speed conditions. A 2D unsteady numerical model based on Ansys-Fluent 12.0 is established to conduct the numerical simulation, which is validated by the corresponding experimental data. For the unsteady calculations, the SST model, 2x 105 and 0.01 s are se- lected as the proper turbulence model, mesh number, and time step, respectively. Detailed contours of the velocity distributions around the rotor blade foils have been provided for a flow field analysis. The tip speed ratio (TSR) determines the azimuth angle of the appearance of the torque peak, which occurs once for a blade in a single revolution. It is also found that simply increasing the incident flow velocity could not improve the turbine performance accordingly. The peaks of the averaged power and torque coeffi- cients appear at TSRs of 2.1 and 1.8, respectively. Furthermore, several shapes of the duct augmentation are proposed to improve the turbine performance by contracting the flow path gradually from the open mouth of the duct to the rotor. The duct augmentation can significantly enhance the power and torque output. Furthermore, the elliptic shape enables the best performance of the turbine. The numerical results prove the capability of the present 2D model for the unsteady hydrodynamics and an operating performance analy- sis of the vertical tidal stream turbine.展开更多
永磁同步电机因其结构紧凑、噪声较少、功耗较少、运行速度快、操作稳定,已被普遍采用。针对永磁同步电机弱磁控制过程中,转速环参数选取采用传统PI(proportional-integral)控制方法,依靠经验整定参数,外界抗干扰能力较差、难以保证在...永磁同步电机因其结构紧凑、噪声较少、功耗较少、运行速度快、操作稳定,已被普遍采用。针对永磁同步电机弱磁控制过程中,转速环参数选取采用传统PI(proportional-integral)控制方法,依靠经验整定参数,外界抗干扰能力较差、难以保证在各运行区间具有优良性能等问题,提出了一种基于减法平均优化算法的永磁同步电机的弱磁和MTPA(maximum torque per ampere)控制的宽运行范围方法。将智能寻优算法、MTPA控制、弱磁控制三者相结合,利用减法平均优化算法优化PI控制器的参数,提高了系统的响应性能和抗干扰能力;工作电压未超过电压极限圆使用MTPA控制策略运行;工作电压超过电压极限圆利用电压闭环反馈,进行弱磁控制。使用MATLAB/Simulink构建的永磁同步电机弱磁控制仿真模拟,通过PI控制器和减法平均优化算法优化后的PI控制器性能对比,从仿真结果得到控制器方法的有效性。实验有效证明了该控制方法能够解决各种运行工况下控制器参数的优化整定问题,提高电机控制精度。展开更多
长脉宽工作模式引起的雷达系统功率大范围波动对供电系统稳定性造成影响。首先建立阵面发射单元的数学模型,根据脉冲负载的平均功率供电模式特点,提出了电流裕度的概念。采用状态空间分段方法,分析了供电系统的电压和电流变化规律,推导...长脉宽工作模式引起的雷达系统功率大范围波动对供电系统稳定性造成影响。首先建立阵面发射单元的数学模型,根据脉冲负载的平均功率供电模式特点,提出了电流裕度的概念。采用状态空间分段方法,分析了供电系统的电压和电流变化规律,推导出长脉宽工作模式下系统功率波动函数及其简化形式。然后,提出峰峰值与平均功率比PAPR(peak-peak to average power ratio),用以定量分析功率波动程度,根据该指标,分析了影响系统功率波动的影响因素,得到了功率波动与影响因素之间的关系。最后通过实例分析,验证了所提出的结论,为长脉宽工作模式下雷达电源系统设计奠定了理论基础,具有良好的工程应用价值。展开更多
文摘A great amount of work addressed methods for predicting the battery lifetime in wireless sensor systems. In spite of these efforts, the reported experimental results demonstrate that the duty-cycle current average method, which is widely used to this aim, fails in accurately estimating the battery life time of most of the presented wireless sensor system applications. The aim of this paper is to experimentally assess the duty-cycle current average method in order to give more effective insight on the effectiveness of the method. An electronic metering system, based on a dedicated PCB, has been designed and developed to experimentally measure node current consumption profiles and charge extracted from the battery in two selected case studies. A battery lifetime measurement (during 30 days) has been carried out. Experimental results have been assessed and compared with estimations given by using the duty-cycle current average method. Based on the measurement results, we show that the assumptions on which the method is based do not hold in real operating cases. The rationality of the duty-cycle current average method needs reconsidering.
基金the financial support provided by the National Natural Science Foundation of China (51279190 and 51311140259)National High Technology Research and Development Program of China (863 Project,2012AA052601)+2 种基金Shandong Natural Science Funds for Distinguished Young Scholar (JQ201314)Qingdao Municipal Science & Technology Program (13-4-1-38hy and 14-9-1-5-hy)the Program of Introducing Talents of Discipline to Universities (111 Project,B14028)
文摘Abstract Tidal current energy is renewable and sustainable, which is a promising altemative energy resource for the future elec- tricity supply. The straight-bladed vertical-axis turbine is regarded as a useful tool to capture the tidal current energy especially under low-speed conditions. A 2D unsteady numerical model based on Ansys-Fluent 12.0 is established to conduct the numerical simulation, which is validated by the corresponding experimental data. For the unsteady calculations, the SST model, 2x 105 and 0.01 s are se- lected as the proper turbulence model, mesh number, and time step, respectively. Detailed contours of the velocity distributions around the rotor blade foils have been provided for a flow field analysis. The tip speed ratio (TSR) determines the azimuth angle of the appearance of the torque peak, which occurs once for a blade in a single revolution. It is also found that simply increasing the incident flow velocity could not improve the turbine performance accordingly. The peaks of the averaged power and torque coeffi- cients appear at TSRs of 2.1 and 1.8, respectively. Furthermore, several shapes of the duct augmentation are proposed to improve the turbine performance by contracting the flow path gradually from the open mouth of the duct to the rotor. The duct augmentation can significantly enhance the power and torque output. Furthermore, the elliptic shape enables the best performance of the turbine. The numerical results prove the capability of the present 2D model for the unsteady hydrodynamics and an operating performance analy- sis of the vertical tidal stream turbine.
文摘永磁同步电机因其结构紧凑、噪声较少、功耗较少、运行速度快、操作稳定,已被普遍采用。针对永磁同步电机弱磁控制过程中,转速环参数选取采用传统PI(proportional-integral)控制方法,依靠经验整定参数,外界抗干扰能力较差、难以保证在各运行区间具有优良性能等问题,提出了一种基于减法平均优化算法的永磁同步电机的弱磁和MTPA(maximum torque per ampere)控制的宽运行范围方法。将智能寻优算法、MTPA控制、弱磁控制三者相结合,利用减法平均优化算法优化PI控制器的参数,提高了系统的响应性能和抗干扰能力;工作电压未超过电压极限圆使用MTPA控制策略运行;工作电压超过电压极限圆利用电压闭环反馈,进行弱磁控制。使用MATLAB/Simulink构建的永磁同步电机弱磁控制仿真模拟,通过PI控制器和减法平均优化算法优化后的PI控制器性能对比,从仿真结果得到控制器方法的有效性。实验有效证明了该控制方法能够解决各种运行工况下控制器参数的优化整定问题,提高电机控制精度。
文摘长脉宽工作模式引起的雷达系统功率大范围波动对供电系统稳定性造成影响。首先建立阵面发射单元的数学模型,根据脉冲负载的平均功率供电模式特点,提出了电流裕度的概念。采用状态空间分段方法,分析了供电系统的电压和电流变化规律,推导出长脉宽工作模式下系统功率波动函数及其简化形式。然后,提出峰峰值与平均功率比PAPR(peak-peak to average power ratio),用以定量分析功率波动程度,根据该指标,分析了影响系统功率波动的影响因素,得到了功率波动与影响因素之间的关系。最后通过实例分析,验证了所提出的结论,为长脉宽工作模式下雷达电源系统设计奠定了理论基础,具有良好的工程应用价值。