Objectives A nurse duty roster is usually prepared monthly in a hospital ward.It is common for nurses to make duty shift requests prior to scheduling.A ward manager normally spends more than a working day to manually ...Objectives A nurse duty roster is usually prepared monthly in a hospital ward.It is common for nurses to make duty shift requests prior to scheduling.A ward manager normally spends more than a working day to manually prepare and subsequently to optimally adjust the schedule upon staff requests and hospital policies.This study aimed to develop an automatic nurse roster scheduling system with the use of open-source operational research tools by taking into account the hospital standards and the constraints from nurses.Methods Artificial intelligence and end user tools operational research tools were used to develop the code for the nurse duty roster scheduling system.To compare with previous research on various heuristics in employee scheduling,the current system was developed on open architecture and adopted with real shift duty requirements in a hospital ward.Results The schedule can be generated within 1 min under both hard and soft constraint optimization.All hard constraints are fulfilled and most nurse soft constraints could be met.Compared with those schedules prepared manually,the computer-generated schedules were more optimally adjusted as real time interaction among nurses and management personnel.The generated schedules were flexible to cope with daily and hourly duty changes by redeploying ward staff in order to maintain safe staffing levels.Conclusions An economical but yet highly efficient and user friendly solution to nurse roster scheduling system has been developed and adopted using open-source operational research methodology.The open-source platform is found to perform satisfactorily in scheduling application.The system can be implemented to different wards in hospitals and be regularly updated with new hospital polices and nurse manpower by hospital information personnel with training in artificial intelligence.展开更多
This work focuses on the estimation of a duty cycle of a radiant ceiling heating system with a panel surface temperature of 35℃and a heat flux of 65 W/m2 that corresponds to a thermal comfort for sedentary occupants....This work focuses on the estimation of a duty cycle of a radiant ceiling heating system with a panel surface temperature of 35℃and a heat flux of 65 W/m2 that corresponds to a thermal comfort for sedentary occupants.The results obtained are based on the theoretical heat transfer equations that govern the radiant and natural convection heat exchange mechanisms,and experimental heat transfer coefficients available in the literature.The results of the examined radiant heating system with specific conditions showed that a duty cycle of 6.46 min alternated by 13.36 min in shutting-down position is required to assure an acceptable thermal comfort for the enclosure space occupants.In addition,the study showed that for extremely cold-temperature conditions the heating system requires a daily operating load of about 61.2%which clearly proves the efficiency of these radiant heating systems in terms of energy consumption.展开更多
A two-input boost converter with voltage multiplier cell is proposed in this paper. Then a family of two-input converters with and without voltage multiplier cell are derived and their results are compared to achieve ...A two-input boost converter with voltage multiplier cell is proposed in this paper. Then a family of two-input converters with and without voltage multiplier cell are derived and their results are compared to achieve high voltage gain, low duty cycle, and reduced voltage stress. From the analysis of different topologies, a modified two-input converter with two-stage voltage multiplier cell has good operating characteristics. The switch voltage stress and duty cycle of the modified converter is significantly very less than that of the other converter topologies. The modified DC-DC converter with 50% duty cycle achieves a voltage gain of 10 and the results are verified by using MATLAB/Simulink software.展开更多
The Internet of Things(IoT)has witnessed a significant surge in adoption,particularly through the utilization of Wireless Sensor Networks(WSNs),which comprise small internet-connected devices.These deployments span va...The Internet of Things(IoT)has witnessed a significant surge in adoption,particularly through the utilization of Wireless Sensor Networks(WSNs),which comprise small internet-connected devices.These deployments span various environments and offer a multitude of benefits.However,the widespread use of battery-powered devices introduces challenges due to their limited hardware resources and communication capabilities.In response to this,the Internet Engineering Task Force(IETF)has developed the IPv6 Routing Protocol for Low-power and Lossy Networks(RPL)to address the unique requirements of such networks.Recognizing the critical role of RPL in maintaining high performance,this paper proposes a novel approach to optimizing power consumption.Specifically,it introduces a developed sensor motes topology integrated with a Radio Duty Cycling(RDC)mechanism aimed at minimizing power usage.Through rigorous analysis,the paper evaluates the power efficiency of this approach through several simulations conducted across different network topologies,including random,linear,tree,and elliptical topologies.Additionally,three distinct RDC mechanisms—CXMAC,ContikiMAC,and NullRDC—are investigated to assess their impact on power consumption.The findings of the study,based on a comprehensive and deep analysis of the simulated results,highlight the efficiency of ContikiMAC in power conservation.This research contributes valuable insights into enhancing the energy efficiency of RPL-based IoT networks,ultimately facilitating their widespread deployment and usability in diverse environments.展开更多
High-efficient isolated DC/DC converters with a high-efficiency synchronous reluctance generator(SRG)are the ultimate solutions in DC microgrid systems.The design and modeling of isolated DC/DC converters with the per...High-efficient isolated DC/DC converters with a high-efficiency synchronous reluctance generator(SRG)are the ultimate solutions in DC microgrid systems.The design and modeling of isolated DC/DC converters with the performance of SRG are carried out.On the generator side,reactive and active powers are used as pulse width modulation(PWM)control variables.Further,the flux estimator is used.Three-phase PWM rectifier is used by applying space vector modulation(SVM)with a constant switching frequency for direct power control.Further,the paper also includes the experimental validation of the results.The paper also proposes that highly efficient power converters and synchronous reluctance generators are required to achieve high performance for hybrid renewable energy systems applications.展开更多
BACKGROUND Sleep deprivation can lead to increased body weight and blood pressure(BP),but the latent effects of partial sleep deprivation related to required night sentry duties within a short-term period on cardiomet...BACKGROUND Sleep deprivation can lead to increased body weight and blood pressure(BP),but the latent effects of partial sleep deprivation related to required night sentry duties within a short-term period on cardiometabolic characteristic changes in military personnel are unclear.AIM To investigate the association between night sentry duty frequency in the past 3 months and cardiometabolic characteristics in armed forces personnel.METHODS A total of 867 armed forces personnel who were aged 18-39 years and did not take any antihypertensive medications in Taiwan in 2020 were included.The frequency of night sentry duty was self-reported via a questionnaire(average number of night sentry shifts per month for the past 3 months).Hemodynamic status was assessed via the resting BP and pulse rate(PR).Cardiometabolic risk factors were defined according to the International Diabetes Federation criteria.Multivariable linear regression analyses of the associations between night sentry duties and PR,BP,and other metabolic syndrome(MetS)marker levels were performed,with adjustments for age,sex,substance use,body mass index and aerobic fitness.Multiple logistic regression analysis was carried out to determine the associations between night sentry duties and the prevalence of each MetS feature.展开更多
Through analyzing theories and legislative cases in respect of Business Judgment Rule in American justice systems with the com parison method,this article reveals that the business judgment system is conducive to the ...Through analyzing theories and legislative cases in respect of Business Judgment Rule in American justice systems with the com parison method,this article reveals that the business judgment system is conducive to the protection of rights and interests of the directors in decision making,and enables the court to avoid the substantive review on business management in an effective manner;at the same time,in view of the blanks and deficiencies in the legislation of China in the "Company Law" and other relevant laws,it is recommended that the Business Judgment Rule be introduced into China and the legislation in respect of director accountability be strengthened,while the direc tors fiduciary duty and other supporting systems be improved,with the reference of the U.S.practice,to clarify the legal boundary between rights and responsibilities of directors.展开更多
With the expansion of the application range and network scale of wireless sensor networks in recent years,WSNs often generate data surges and delay queues during the transmission process,causing network paralysis,even...With the expansion of the application range and network scale of wireless sensor networks in recent years,WSNs often generate data surges and delay queues during the transmission process,causing network paralysis,even resulting in local or global congestion.In this paper,a dynamically Adjusted Duty Cycle for Optimized Congestion based on a real-time Queue Length(ADCOC)scheme is proposed.In order to improve the resource utilization rate of network nodes,we carried out optimization analysis based on the theory and applied it to the adjustment of the node’s duty cycle strategy.Using this strategy to ensure that the network lifetime remains the same,can minimize system delay and maximize energy efficiency.Firstly,the problems of the existing RED algorithm are analyzed.We introduce the improved SIG-RED algorithm into the ADCOC mechanism.As the data traffic changes,the RED protocol cannot automatically adjust the duty cycle.A scheduler is added to the buffer area manager,referring to a weighted index of network congestion,which can quickly determine the status of network congestion.The value of the weighting coefficient W is adjusted by the Bayesian method.The scheduler preferably transmits severely urgent data,alleviating the memory load.Then we combined improved data fusion technology and information gain methods to adjust the duty cycle dynamically.By simulating the algorithm,it shows that it has faster convergence speed and smaller queue jitter.Finally,we combine the adjusted congestion weight and the duty cycle growth value to adjust the data processing rate capability in the real-time network by dynamically adjusting it to adapt to bursts of data streams.Thus,the frequency of congestion is reduced to ensure that the system has higher processing efficiency and good adaptability.展开更多
Duty-cycle modulation alternately blowing from two opposite-facing plasma actu- ators on the leeward surface near the apex of a cone with a 10° semi-apex angle is adopted to control mean lateral force and moment,...Duty-cycle modulation alternately blowing from two opposite-facing plasma actu- ators on the leeward surface near the apex of a cone with a 10° semi-apex angle is adopted to control mean lateral force and moment, and the flow control mechanisms are presented. Pressure distributions over the forebody of the cone are measured by steady pressure tappings. The experiments are performed in a 3.0×1.6 m open-circuit wind tunnel at a wind speed of 20 m/s, a 45° angle of attack and a Reynolds number of 2×10^5, based on the diameter of the base of the cone. Almost linearly proportional control of the lateral forces and moments over a slender conical forebody at a high angle of attack has been demonstrated by employing a pair of single dielectric barrier discharge plasma actuators near the apex of the cone, combined with a duty-cycle tech- nique. The pressure distribution measurements indicate that the hi-stable vortex pattern appears to be shifted in the opposite direction when the port or starboard actuator is activated, while the other is kept off during the test. It is shown that the reduced pulse-repetition frequency based on the local diameter at the plasma actuator equal to one yields the highest effectiveness among the cases considered.展开更多
We report the transient effects in Erbium Doped Fiber Amplifier (EDFA) systems for pulsed signals with different duty-cycles. The work includes the analysis using three different duty-cycles, 10%, 20% and 50%. A curve...We report the transient effects in Erbium Doped Fiber Amplifier (EDFA) systems for pulsed signals with different duty-cycles. The work includes the analysis using three different duty-cycles, 10%, 20% and 50%. A curve fitting technique is also proposed to predict the transients of any lesser duty-cycled pulse, once the transients of a larger duty-cycled pulse is known. Mathematical evaluation confirms the double exponential shape of transient distorted signal. Further, EDFA transient effect is experimentally verified on a Wavelength Division Multiplexed (WDM) link by multiplexing high and low bitrate modulated optical signals. We conclude the paper by proposing a transient suppression technique for variable dutycycle signals and analyzing its effectiveness with different wavelength spacing.展开更多
Driving style,traffic and weather conditions have a significant impact on vehicle fuel consumption and in particular,the road freight traffic significantly contributes to the CO2 increase in atmosphere.This paper prop...Driving style,traffic and weather conditions have a significant impact on vehicle fuel consumption and in particular,the road freight traffic significantly contributes to the CO2 increase in atmosphere.This paper proposes an Eco-Route Planner devoted to determine and communicate to the drivers of Heavy-Duty Vehicles(HDVs)the eco-route that guarantees the minimum fuel consumption by respecting the travel time established by the freight companies.The proposed eco-route is the optimal route from origin to destination and includes the optimized speed and gear profiles.To this aim,the Cloud Computing System architecture is composed of two main components:the Data Management System that collects,fuses and integrates the raw external sources data and the Cloud Optimizer that builds the route network,selects the eco-route and determines the optimal speed and gear profiles.Finally,a real case study is discussed by showing the benefit of the proposed Eco-Route planner.展开更多
文摘Objectives A nurse duty roster is usually prepared monthly in a hospital ward.It is common for nurses to make duty shift requests prior to scheduling.A ward manager normally spends more than a working day to manually prepare and subsequently to optimally adjust the schedule upon staff requests and hospital policies.This study aimed to develop an automatic nurse roster scheduling system with the use of open-source operational research tools by taking into account the hospital standards and the constraints from nurses.Methods Artificial intelligence and end user tools operational research tools were used to develop the code for the nurse duty roster scheduling system.To compare with previous research on various heuristics in employee scheduling,the current system was developed on open architecture and adopted with real shift duty requirements in a hospital ward.Results The schedule can be generated within 1 min under both hard and soft constraint optimization.All hard constraints are fulfilled and most nurse soft constraints could be met.Compared with those schedules prepared manually,the computer-generated schedules were more optimally adjusted as real time interaction among nurses and management personnel.The generated schedules were flexible to cope with daily and hourly duty changes by redeploying ward staff in order to maintain safe staffing levels.Conclusions An economical but yet highly efficient and user friendly solution to nurse roster scheduling system has been developed and adopted using open-source operational research methodology.The open-source platform is found to perform satisfactorily in scheduling application.The system can be implemented to different wards in hospitals and be regularly updated with new hospital polices and nurse manpower by hospital information personnel with training in artificial intelligence.
文摘This work focuses on the estimation of a duty cycle of a radiant ceiling heating system with a panel surface temperature of 35℃and a heat flux of 65 W/m2 that corresponds to a thermal comfort for sedentary occupants.The results obtained are based on the theoretical heat transfer equations that govern the radiant and natural convection heat exchange mechanisms,and experimental heat transfer coefficients available in the literature.The results of the examined radiant heating system with specific conditions showed that a duty cycle of 6.46 min alternated by 13.36 min in shutting-down position is required to assure an acceptable thermal comfort for the enclosure space occupants.In addition,the study showed that for extremely cold-temperature conditions the heating system requires a daily operating load of about 61.2%which clearly proves the efficiency of these radiant heating systems in terms of energy consumption.
文摘A two-input boost converter with voltage multiplier cell is proposed in this paper. Then a family of two-input converters with and without voltage multiplier cell are derived and their results are compared to achieve high voltage gain, low duty cycle, and reduced voltage stress. From the analysis of different topologies, a modified two-input converter with two-stage voltage multiplier cell has good operating characteristics. The switch voltage stress and duty cycle of the modified converter is significantly very less than that of the other converter topologies. The modified DC-DC converter with 50% duty cycle achieves a voltage gain of 10 and the results are verified by using MATLAB/Simulink software.
文摘The Internet of Things(IoT)has witnessed a significant surge in adoption,particularly through the utilization of Wireless Sensor Networks(WSNs),which comprise small internet-connected devices.These deployments span various environments and offer a multitude of benefits.However,the widespread use of battery-powered devices introduces challenges due to their limited hardware resources and communication capabilities.In response to this,the Internet Engineering Task Force(IETF)has developed the IPv6 Routing Protocol for Low-power and Lossy Networks(RPL)to address the unique requirements of such networks.Recognizing the critical role of RPL in maintaining high performance,this paper proposes a novel approach to optimizing power consumption.Specifically,it introduces a developed sensor motes topology integrated with a Radio Duty Cycling(RDC)mechanism aimed at minimizing power usage.Through rigorous analysis,the paper evaluates the power efficiency of this approach through several simulations conducted across different network topologies,including random,linear,tree,and elliptical topologies.Additionally,three distinct RDC mechanisms—CXMAC,ContikiMAC,and NullRDC—are investigated to assess their impact on power consumption.The findings of the study,based on a comprehensive and deep analysis of the simulated results,highlight the efficiency of ContikiMAC in power conservation.This research contributes valuable insights into enhancing the energy efficiency of RPL-based IoT networks,ultimately facilitating their widespread deployment and usability in diverse environments.
文摘High-efficient isolated DC/DC converters with a high-efficiency synchronous reluctance generator(SRG)are the ultimate solutions in DC microgrid systems.The design and modeling of isolated DC/DC converters with the performance of SRG are carried out.On the generator side,reactive and active powers are used as pulse width modulation(PWM)control variables.Further,the flux estimator is used.Three-phase PWM rectifier is used by applying space vector modulation(SVM)with a constant switching frequency for direct power control.Further,the paper also includes the experimental validation of the results.The paper also proposes that highly efficient power converters and synchronous reluctance generators are required to achieve high performance for hybrid renewable energy systems applications.
基金Supported by Medical Affairs Bureau Ministry of National Defense,No.MND-MAB-D-113200Hualien Armed Forces General Hospital,No.HAFGH-D-113008.
文摘BACKGROUND Sleep deprivation can lead to increased body weight and blood pressure(BP),but the latent effects of partial sleep deprivation related to required night sentry duties within a short-term period on cardiometabolic characteristic changes in military personnel are unclear.AIM To investigate the association between night sentry duty frequency in the past 3 months and cardiometabolic characteristics in armed forces personnel.METHODS A total of 867 armed forces personnel who were aged 18-39 years and did not take any antihypertensive medications in Taiwan in 2020 were included.The frequency of night sentry duty was self-reported via a questionnaire(average number of night sentry shifts per month for the past 3 months).Hemodynamic status was assessed via the resting BP and pulse rate(PR).Cardiometabolic risk factors were defined according to the International Diabetes Federation criteria.Multivariable linear regression analyses of the associations between night sentry duties and PR,BP,and other metabolic syndrome(MetS)marker levels were performed,with adjustments for age,sex,substance use,body mass index and aerobic fitness.Multiple logistic regression analysis was carried out to determine the associations between night sentry duties and the prevalence of each MetS feature.
文摘Through analyzing theories and legislative cases in respect of Business Judgment Rule in American justice systems with the com parison method,this article reveals that the business judgment system is conducive to the protection of rights and interests of the directors in decision making,and enables the court to avoid the substantive review on business management in an effective manner;at the same time,in view of the blanks and deficiencies in the legislation of China in the "Company Law" and other relevant laws,it is recommended that the Business Judgment Rule be introduced into China and the legislation in respect of director accountability be strengthened,while the direc tors fiduciary duty and other supporting systems be improved,with the reference of the U.S.practice,to clarify the legal boundary between rights and responsibilities of directors.
基金This work is supported by“National Science Foundation of Hunan Province,China”under Grant 2020JJ4757.
文摘With the expansion of the application range and network scale of wireless sensor networks in recent years,WSNs often generate data surges and delay queues during the transmission process,causing network paralysis,even resulting in local or global congestion.In this paper,a dynamically Adjusted Duty Cycle for Optimized Congestion based on a real-time Queue Length(ADCOC)scheme is proposed.In order to improve the resource utilization rate of network nodes,we carried out optimization analysis based on the theory and applied it to the adjustment of the node’s duty cycle strategy.Using this strategy to ensure that the network lifetime remains the same,can minimize system delay and maximize energy efficiency.Firstly,the problems of the existing RED algorithm are analyzed.We introduce the improved SIG-RED algorithm into the ADCOC mechanism.As the data traffic changes,the RED protocol cannot automatically adjust the duty cycle.A scheduler is added to the buffer area manager,referring to a weighted index of network congestion,which can quickly determine the status of network congestion.The value of the weighting coefficient W is adjusted by the Bayesian method.The scheduler preferably transmits severely urgent data,alleviating the memory load.Then we combined improved data fusion technology and information gain methods to adjust the duty cycle dynamically.By simulating the algorithm,it shows that it has faster convergence speed and smaller queue jitter.Finally,we combine the adjusted congestion weight and the duty cycle growth value to adjust the data processing rate capability in the real-time network by dynamically adjusting it to adapt to bursts of data streams.Thus,the frequency of congestion is reduced to ensure that the system has higher processing efficiency and good adaptability.
基金supported by the Specialized Research Fund for Doctoral Program of Higher Education,SPFDP-200806990003the Foundation for Fundamental Research of the Northwestern Polytechnical University,NPU-FFR-W018102
文摘Duty-cycle modulation alternately blowing from two opposite-facing plasma actu- ators on the leeward surface near the apex of a cone with a 10° semi-apex angle is adopted to control mean lateral force and moment, and the flow control mechanisms are presented. Pressure distributions over the forebody of the cone are measured by steady pressure tappings. The experiments are performed in a 3.0×1.6 m open-circuit wind tunnel at a wind speed of 20 m/s, a 45° angle of attack and a Reynolds number of 2×10^5, based on the diameter of the base of the cone. Almost linearly proportional control of the lateral forces and moments over a slender conical forebody at a high angle of attack has been demonstrated by employing a pair of single dielectric barrier discharge plasma actuators near the apex of the cone, combined with a duty-cycle tech- nique. The pressure distribution measurements indicate that the hi-stable vortex pattern appears to be shifted in the opposite direction when the port or starboard actuator is activated, while the other is kept off during the test. It is shown that the reduced pulse-repetition frequency based on the local diameter at the plasma actuator equal to one yields the highest effectiveness among the cases considered.
文摘We report the transient effects in Erbium Doped Fiber Amplifier (EDFA) systems for pulsed signals with different duty-cycles. The work includes the analysis using three different duty-cycles, 10%, 20% and 50%. A curve fitting technique is also proposed to predict the transients of any lesser duty-cycled pulse, once the transients of a larger duty-cycled pulse is known. Mathematical evaluation confirms the double exponential shape of transient distorted signal. Further, EDFA transient effect is experimentally verified on a Wavelength Division Multiplexed (WDM) link by multiplexing high and low bitrate modulated optical signals. We conclude the paper by proposing a transient suppression technique for variable dutycycle signals and analyzing its effectiveness with different wavelength spacing.
基金the European Project opti Truck(optimal fuel consumption with predictive power train control and calibration for intelligent Truck)of the H2020 innovation programme。
文摘Driving style,traffic and weather conditions have a significant impact on vehicle fuel consumption and in particular,the road freight traffic significantly contributes to the CO2 increase in atmosphere.This paper proposes an Eco-Route Planner devoted to determine and communicate to the drivers of Heavy-Duty Vehicles(HDVs)the eco-route that guarantees the minimum fuel consumption by respecting the travel time established by the freight companies.The proposed eco-route is the optimal route from origin to destination and includes the optimized speed and gear profiles.To this aim,the Cloud Computing System architecture is composed of two main components:the Data Management System that collects,fuses and integrates the raw external sources data and the Cloud Optimizer that builds the route network,selects the eco-route and determines the optimal speed and gear profiles.Finally,a real case study is discussed by showing the benefit of the proposed Eco-Route planner.