Phthalocyanines-related compounds, subphthalocyanines, are the homologues consisting of three isoindole units with boron as the center. The absorption maximum of subphthalocyanines, called the Q band, appears around 5...Phthalocyanines-related compounds, subphthalocyanines, are the homologues consisting of three isoindole units with boron as the center. The absorption maximum of subphthalocyanines, called the Q band, appears around 560 - 630 nm, which is shifted by approximately 100 nm to shorter wavelengths compared to phthalocyanines. Subphthalocyanines are used as precursors to prepare unsymmetric phthalocyanines for ring enlargement reaction. In this decade, phthalocyanines are used for dye-sensitized solar cells (DSSCs), which require strong absorption of far-red light between 700 and 850 nm because of their highly efficiency. Non-peripheral thioaryl-substituted phthalocyanines have been synthesized. They show near-infrared absorption around 780 - 870 nm and have excellent electron transfer properties. However, their lack of affinity to basal plats inhibits their use as DSSC photosensitizer. Therefore, to synthesize unsymmetrical non-peripheral thioaryl-substituted phthalocyanines possessing good affinity to basal plates, the authors prepared subphthalocyanines having thioaryl substituents as precursors. Spectroscopic properties and electron transfer abilities to synthesize non-peripheral thioaryl-substituted subphthalocyanines were estimated using cyclic voltammetry. The Q band of non-peripheral thioaryl-substituted subphthalocyanines shows around 650 nm shifted to longer wavelength by 86 nm in comparison to subphthalocyanine. The compounds show many reduction potentials. They are acceptable electrons in the subphthalocyanine ring, meaning that the compounds have good electron transfer properties.展开更多
1 Introduction Dye-sensitized solar cells (DSSCs) with a mesoporous network of interconnected TiO2 nanocrystals have attracted wide-spread scientific and technological interest over the past decades due to its low cos...1 Introduction Dye-sensitized solar cells (DSSCs) with a mesoporous network of interconnected TiO2 nanocrystals have attracted wide-spread scientific and technological interest over the past decades due to its low cost and high energy conversion efficiency. Meantime, it also has been considered as potential alternative to conventional photovoltaic devices. In 2001, Gratzel group constructed such kind of DSSC with the conversion efficiency of more than 11%[1]. But this system uses liquid electrolyte with...展开更多
文摘Phthalocyanines-related compounds, subphthalocyanines, are the homologues consisting of three isoindole units with boron as the center. The absorption maximum of subphthalocyanines, called the Q band, appears around 560 - 630 nm, which is shifted by approximately 100 nm to shorter wavelengths compared to phthalocyanines. Subphthalocyanines are used as precursors to prepare unsymmetric phthalocyanines for ring enlargement reaction. In this decade, phthalocyanines are used for dye-sensitized solar cells (DSSCs), which require strong absorption of far-red light between 700 and 850 nm because of their highly efficiency. Non-peripheral thioaryl-substituted phthalocyanines have been synthesized. They show near-infrared absorption around 780 - 870 nm and have excellent electron transfer properties. However, their lack of affinity to basal plats inhibits their use as DSSC photosensitizer. Therefore, to synthesize unsymmetrical non-peripheral thioaryl-substituted phthalocyanines possessing good affinity to basal plates, the authors prepared subphthalocyanines having thioaryl substituents as precursors. Spectroscopic properties and electron transfer abilities to synthesize non-peripheral thioaryl-substituted subphthalocyanines were estimated using cyclic voltammetry. The Q band of non-peripheral thioaryl-substituted subphthalocyanines shows around 650 nm shifted to longer wavelength by 86 nm in comparison to subphthalocyanine. The compounds show many reduction potentials. They are acceptable electrons in the subphthalocyanine ring, meaning that the compounds have good electron transfer properties.
基金Project supported bythe Natural Science Foundation of China (50221201 and 50473055) National Re-search Fund for Fundamental Key Project (2006CB202605)
文摘1 Introduction Dye-sensitized solar cells (DSSCs) with a mesoporous network of interconnected TiO2 nanocrystals have attracted wide-spread scientific and technological interest over the past decades due to its low cost and high energy conversion efficiency. Meantime, it also has been considered as potential alternative to conventional photovoltaic devices. In 2001, Gratzel group constructed such kind of DSSC with the conversion efficiency of more than 11%[1]. But this system uses liquid electrolyte with...