The ZnO-modified TiO2 electrode was prepared by adding Zn(CH3COO)2·2H2O to the TiO2 colloid during the sol-gel production process, and was used in dye-sensitized solar cells (DSCs). The open circuit voltage ...The ZnO-modified TiO2 electrode was prepared by adding Zn(CH3COO)2·2H2O to the TiO2 colloid during the sol-gel production process, and was used in dye-sensitized solar cells (DSCs). The open circuit voltage (Voc) and fill factor (if) of the cells were improved sig- nificantly. The performances of the ZnO-modified TiO2 electrode such as dark current, transient photocurrent, impedance, absorption spectra, and fiat band potential (Vfb) were investigated. It is found that the interface charge recombination impedance increases and Vfb shifts about 200 mV toward the cathodic potential. The effect mechanism of ZnO modification on the performance of DSCs may be that ZnO occupies the surface states of the TiO2 film.展开更多
Mesoporous TiO2 (m-TiO2) nanoparticles were used to prepare the porous film electrodes for dye-sensitized solar cells, and a second metal oxide (MgO, ZnO, A1203, or NiO) modifi- cation was carried out by dipping t...Mesoporous TiO2 (m-TiO2) nanoparticles were used to prepare the porous film electrodes for dye-sensitized solar cells, and a second metal oxide (MgO, ZnO, A1203, or NiO) modifi- cation was carried out by dipping the m-TiO2 electrode into their respective nitrate solution followed by annealing at 500 ℃. Experimental results indicated that the above second metal oxide modifications on m-TiO2 electrode are shown in all cases to act as barrier layer for the interracial charge transfer processes, but film electron transport and interfacial charge recombination characteristics under applied bias voltage were dependent significantly on the existing states and kinds of these second metal oxides. Those changes based on sec- ond metal oxide modifications showed good correlation with the current-voltage analyses of dye-sensitized solar cell, and all modifications were found to increase the open-circuit photo- voltage in various degrees, while the MgO, ZnO, and NiO modifications result in 23%, 13%, and 6% improvement in cell conversion efficiency, respectively. The above observations indi- cate that controlling the charge transport and recombination is very important to improve the photovoltaic performance of TiO2-based solar cell.展开更多
Dye-sensitized solar cells (DSSCs) with ZnO spin-coated TiO2 photo-electrodes are compared to DSSC with a bare TiO2 photo-electrode. It is demonstrated that the deposited ZnO of controlled amount, by varying the precu...Dye-sensitized solar cells (DSSCs) with ZnO spin-coated TiO2 photo-electrodes are compared to DSSC with a bare TiO2 photo-electrode. It is demonstrated that the deposited ZnO of controlled amount, by varying the precursor concentration in the coating sol, can indeed enhance the performance of the DSSC. The measured power conversion efficiency shows a maximum around the precursor concentration 0.1 M and falls down sharply to 0% beyond this point. The results are interpreted on the basis of two competing factors: At ZnO concentrations less than 0.1 M, the formation of an energy barrier increases the photocurrent by reducing the rate of interfacial back-recombination. At ZnO concentrations greater than 0.1 M, the screening of the TiO2 film by thicker ZnO layers decreases the photocurrent through the reduction of TiO2 dye-adsorption efficiency.展开更多
A dye-sensitized nanocrystalline TiO 2 solar cell(DYSC) was assembled, of which counter electrode was modified already by platinum, nickel and carbon. It was found that the DYSC had better photoelectric performanc...A dye-sensitized nanocrystalline TiO 2 solar cell(DYSC) was assembled, of which counter electrode was modified already by platinum, nickel and carbon. It was found that the DYSC had better photoelectric performance when the electrode was modified by platinum than by nickel and carbon. The influence of the incidence light wavelength on the incidence monochromatic photoelectric conversion efficiency(IPCE) was investigated. The result shows that the IPCE mainly depends on the short-circuit current density(I SC) of a DYSC, and the IPCE reaches 48.32% under the irradiation with the wavelength of 560 nm when the counter electrode of a DYSC was modified by platinum. The influence of incident light intensity on the photoelectric properties of a DYSC was also investigated. It was found that the I SC and open-circuit voltage(V OC) increased and the fill factor(f f) of the DYSC decreased with the increase of the incident light intensity.展开更多
Composite nanoporous electrode SnO2/TiO2 was fabricated for the dye sensitized solar cell (DSSC) with N3 (Cis-Ru). After introducing of TiO2, the open-circuit photovoltage (Voc) was higher than that of the pure SnO2 ...Composite nanoporous electrode SnO2/TiO2 was fabricated for the dye sensitized solar cell (DSSC) with N3 (Cis-Ru). After introducing of TiO2, the open-circuit photovoltage (Voc) was higher than that of the pure SnO2 electrode, while short-circuit photocurrent (Isc) was varied with the ratio of the TiO2. Appropriate content of the TiO2 can be beneficial to the efficiency of the solar cell, and it gives negative impact on the composite electrode when the content of TiO2 is higher.展开更多
Photocatalytic oxidation desulfurization has become a research hotspot in recent years because of mild reaction conditions, less energy consumption and high selectivity. In this paper, TiO2 was loaded onto SBA-15 mole...Photocatalytic oxidation desulfurization has become a research hotspot in recent years because of mild reaction conditions, less energy consumption and high selectivity. In this paper, TiO2 was loaded onto SBA-15 molecular sieves and sensitized with organic dyes(2, 9-dichloroquinacridone, DCQ) to extend its spectral response range from ultraviolet light to visible light. The catalyst DCQ-X%TiO2@SBA-15 was characterized by BET measurements, X-ray diffraction, Fourier transform infrared spectroscopy and Ultraviolet-visible diffuse reflection spectra, and then it was applied for photocatalytic oxidation desulfurization of gasoline. The effects of different catalytic systems, TiO2 concentration, catalyst dosage, and different model sulfur compounds on catalytic desulfurization performance were investigated. Experimental results show that DCQ-TiO2@SBA-15 has a better performance than the unsensitized TiO2@SBA-15, and the desulfurization rate can reach up to 96.1% in a reaction time of 90 min.展开更多
Titanium tetrachloride (TiCl4) treatment was employed to TiO2 coating deposited on fluoride-doped tin oxide (FTO) conducting glass and indium oxide doped tin oxide (ITO) conducting glass, respectively. The nano-crysta...Titanium tetrachloride (TiCl4) treatment was employed to TiO2 coating deposited on fluoride-doped tin oxide (FTO) conducting glass and indium oxide doped tin oxide (ITO) conducting glass, respectively. The nano-crystalline TiO2 coating was deposited using a composite powder composed of polyethylene glycol (PEG) and 25 nm TiO2 particles by vacuum cold spraying (VCS) process. A commercial N-719 dye was used to adsorb on the surface of TiO2 coating to prepare TiO2 electrode, which was applied to assemble dye-sensitized solar cell (DSC). The cell performance was measured under simulated solar light at an intensity of 100 mW·cm-2. Results show that with an FTO substrate the DSC composed of a VCS TiO2 electrode untreated by TiCl4 gives a short-circuit current density of 13.1 mA·cm-2 and an open circuit voltage of 0.60 V corresponding to an overall conversion efficiency of 4.4%. It is found that after TiCl4 treatment to the VCS TiO2 electrode with an FTO substrate, the short circuit current density of the cell increases by 31%, the open-circuit voltage increases by 60 mV and a higher conversion yield of 6.5% was obtained. However, when an ITO substrate is used to deposit TiO2 coating by VCS, after TiCl4 treatment, the conversion efficiency of the assembled cell reduces slightly due to corrosion of the conducting layer on the ITO glass by TiCl4.展开更多
A bi-layer photoanode for dye-sensitized solar cell(DSSC) was fabricated, in which TiO_2 hollow spheres(THSs) were designed as a scattering layer and P25/multi-walled carbon nanotubes(MWNTs) as an under-layer. The THS...A bi-layer photoanode for dye-sensitized solar cell(DSSC) was fabricated, in which TiO_2 hollow spheres(THSs) were designed as a scattering layer and P25/multi-walled carbon nanotubes(MWNTs) as an under-layer. The THSs were synthesized by a sacrifice template method and showed good light scattering ability as an over-layer of the photoanode. MWNTs were mixed with P25 to form an under-layer of the photoanode to improve the electron transmission ability of the photoanode. The power conversion efficiency of this kind of DSSC with bi-layer was enhanced to 5.13 %,which is 14.25 % higher than that of pure P25 DSSC.Graphical Abstract A bi-layer composite photoanode based on P25/MWNTs-THSs with improved light scattering and electron transmission, which will provide a new insight into fabrication and structure design of highly efficient dyesensitized solar cells.展开更多
Yb-doped TiO2 pastes with different Yb/TiO2 weight ratios are prepared in the sol-gel process to obtain dyesensitized solar cells (DSCs). The nanocrystalline size of Yb-TiO2 becomes smaller and the lattice parameter...Yb-doped TiO2 pastes with different Yb/TiO2 weight ratios are prepared in the sol-gel process to obtain dyesensitized solar cells (DSCs). The nanocrystalline size of Yb-TiO2 becomes smaller and the lattice parameters change. Lattice distortion is observed and dark current is detected. It is found that a part of Yb existing as insulating oxide Yb2O3 state acts as barrier layers at the electrode-electrolyte interface to suppress charge recombination. A Yb-doped TiO2 electrode applied in DSCs leads to a higher open-circuit voltage and a higher fill factor. How the Yb-doped TiO2 films affect the photovoltaic response of DSCs is discussed.展开更多
TiO2 is a wide band gap semiconductor with important applications in photovoltaic cells. Vertically aligned Tit2 nanorod arrays (NRs) are grown on the fluorine-doped tin oxide (FTO) substrates by a multicycle hydr...TiO2 is a wide band gap semiconductor with important applications in photovoltaic cells. Vertically aligned Tit2 nanorod arrays (NRs) are grown on the fluorine-doped tin oxide (FTO) substrates by a multicycle hydrothermal synthesis process. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and selected-area electron diffraction (SAED). It is found that dye-sensitized solar cells (DSSCs) assembled by the as-prepared Tit2 single-crystal NRs exhibit different trends under the condition of different nucleation and growth concentrations. Optimum cell performance is obtained with high nucleation concentration and low growth cycle concentration. The efficiency enhancement is mainly attributed to the improved specific surface area of the nanorod.展开更多
Nanocrystalline TiO2 thin films were successfully prepared by a new “water-cooked” method on both conductive glass substrates and flexible substrates at low temperature. Dye-sensitized solar cells based on these fil...Nanocrystalline TiO2 thin films were successfully prepared by a new “water-cooked” method on both conductive glass substrates and flexible substrates at low temperature. Dye-sensitized solar cells based on these films have exhibited high overall light-to-electricity conversion efficiencies of 4.67 % and 1.94 % on conductive glass substrate and flexible substrate, respectively, under the illumination at 100 mW/cm2.展开更多
A dye-sensitized TiO2 solid solar cell, which contains poly(4-vinylphenyloxy-methyltriphenylamine) in hole transport layer (HTL) doped with LiSCN and methyl-hexyl-imidazolium iodide (MHIml), was prepared. The solar ce...A dye-sensitized TiO2 solid solar cell, which contains poly(4-vinylphenyloxy-methyltriphenylamine) in hole transport layer (HTL) doped with LiSCN and methyl-hexyl-imidazolium iodide (MHIml), was prepared. The solar cell shows that the conversion efficiency is 0.59%, Jsc is 3.03mA/cm2, and V^ is 0.53V at 1 sun light intensity.展开更多
We report a facile method for the fabrication of TiO2 nanofiber-nanoparticle composite (FP) via. simulta- neous electrospraying and electrospinning for dye-sensitized solar cell (DSC) applications. The loading of ...We report a facile method for the fabrication of TiO2 nanofiber-nanoparticle composite (FP) via. simulta- neous electrospraying and electrospinning for dye-sensitized solar cell (DSC) applications. The loading of nanoparticles on the fibers is controlled by varying their feed rates during electrospinning. The FP composites having three different particle loading are prepared by the methodology and the FP with the highest particle loading (denoted as FP-3 in the manuscript) showed the best overall efficiency of 9.15% in comparison to the other compositions of the FP (FP-2, 8.15% and FP-1, Z51%, respectively) and nanofibers (F) and nanoparticles (P) separately (7.21 and 7.81, respectively). All the material systems are characterized by spec- troscopy, microscopy, surface area measurements and the devices are characterized by current-voltage (I-V), incident photon-to-current conversion efficiency (IPCE), electrochemical impedance measurements, etc. I-V, dye-loading and reflectance measurements throw light on the overall performance of the DSC devices.展开更多
YiO2 nanorods have been prepared on ITO substrates by dc reactive magnetron sputtering technique. The hydroxyl groups have been introduced on the nanorods surface. The structure and the optical properties of these nan...YiO2 nanorods have been prepared on ITO substrates by dc reactive magnetron sputtering technique. The hydroxyl groups have been introduced on the nanorods surface. The structure and the optical properties of these nanorods have been studied. The dye-sensitized solar cells (DSSCs) have been assembled using these TiO2 nanorods as photoelectrode. And the effect of the hydroxyl groups on the properties of the photoelectric conversion of the DSSCs has been studied.展开更多
Here, a series of starburst triphenylamine(WD8) derivatives for dye-sensitized solar cells(DSSCs) applications have been designed. The frontier molecular orbitals(FMOs) property, absorption spectra, and charge transfe...Here, a series of starburst triphenylamine(WD8) derivatives for dye-sensitized solar cells(DSSCs) applications have been designed. The frontier molecular orbitals(FMOs) property, absorption spectra, and charge transfer rate property of WD8 and its derivatives were simulated. We also evaluated the FMOs energies and absorption spectra of WD8 and its derivatives with the TiO2 cluster. The simulation results show that the phenothiazine-triphenylamine and 2-cyanoacetic acid groups in the ortho-position will increase the HOMO energy, decrease the LUMO energy, and narrow the HOMO-LUMO gap of WD8. The charge injection from WD8 and its derivatives to TiO2 should be more favorable. The phenothiazine-triphenylamine and 2-cyanoacetic acid groups in the ortho-position will decrease the electron and hole injection barriers of WD8. The phenothiazinetriphenylamine and 2-cyanoacetic acid groups in the ortho-position will improve the absorption spectra properties of WD8. The absorption spectra of WD8 and its derivatives with the TiO2 cluster would have a red shift. The phenothiazine-triphenylamine and 2-cyanoacetic acid groups in the ortho-position will increase the charge transfer property of WD8.展开更多
The screen-printed nanoporous TiO2 thin film was employed to fabricate dye-sensitized solid-state solar cells using CuI as hole-transport materials. The solar cell based on nanoporous TiO2 thin film with large pores f...The screen-printed nanoporous TiO2 thin film was employed to fabricate dye-sensitized solid-state solar cells using CuI as hole-transport materials. The solar cell based on nanoporous TiO2 thin film with large pores formed by the addition of polystyrene balls with diameter of 200 nm to the TiO2 paste exhibits photovoltaic performance enhancement, which is attributed to the good contact of CuI with surface of dye-sensitized thin film due to easy penetration of CuI in the film with large pores.展开更多
Particular kinds of TiO2 nanocrystalline electrodes were sensitized by aluminum phthalocyanines modified with sulfonate groups [ Al(OH) PcSm ]. It was found that in the red region, the electrodes show obvious photoe...Particular kinds of TiO2 nanocrystalline electrodes were sensitized by aluminum phthalocyanines modified with sulfonate groups [ Al(OH) PcSm ]. It was found that in the red region, the electrodes show obvious photoelectrical responses. The surface photovoltage spectra and photocurrent action spectra indicate that in the red region, the monomers of aluminum phthalocyanines have a greater influence on the determination of the photoelectrical response of TiO2 electrodes than the dimers. The dye-sensitized solar cells were obtained by using the aluminum phthalocyaninessensitized TiO2 electrodes and Pt electrodes, which have an open circuit photovoltage of 360 mV, a short circuit photocurrent of 39. 4 μA/cm^2 , a fill factor of 0. 54 and a maximum power output of 7.65 μW/cm^2 under a light intensity of 50 mW/cm^2.展开更多
Spherical TiO2 particles (60 nm) were obtained by using a Triton X-100. The surfactant was employed in two stages, i.e., in the hydrolysis of TiCl4 and then in the precipitation of the corresponding Ti (IV) polymers. ...Spherical TiO2 particles (60 nm) were obtained by using a Triton X-100. The surfactant was employed in two stages, i.e., in the hydrolysis of TiCl4 and then in the precipitation of the corresponding Ti (IV) polymers. The advantages of such spherical TiO2 particles were examined in terms of photovoltaic characteristics of a dye-sensitized solar cell (DSSC) using Orange IV dye as sensitizer. Significantly higher overall solar energy conversion efficiency was obtained for a DSSC using the film of these spherical TiO2 particles, compared with that of a cell using a TiO2 film prepared without surfactant.展开更多
The electrochemical behavior of vitamin C(ascorbic acid or AA) is investigated on the surface of a carbon-paste electrode modified with TiO2 nanoparticles and 2,2'-(1,2 butanediylbis(nitriloethylidyne))-bis-hyd...The electrochemical behavior of vitamin C(ascorbic acid or AA) is investigated on the surface of a carbon-paste electrode modified with TiO2 nanoparticles and 2,2'-(1,2 butanediylbis(nitriloethylidyne))-bis-hydroquinone(BBNBH).The prepared modified electrode showed an efficient catalytic role in the electrochemical oxidation of AA,leading to remarkable decrease in oxidation overpotential and enhancement of the kinetics of the electrode reaction.This modified electrode exhibits well-separated oxidation peaks for AA and uric acid(UA).The modified electrode is successfully applied for the accurate determination of AA in pharmaceutical preparations.展开更多
In this work,we initially synthesized Sb2S3 with uniform flower-like structures via a facile hydrothermal method through the modification of the Sb source and pH value.Afterward,Sb2S3 with a nanosheet structure was su...In this work,we initially synthesized Sb2S3 with uniform flower-like structures via a facile hydrothermal method through the modification of the Sb source and pH value.Afterward,Sb2S3 with a nanosheet structure was successfully synthesized on reduced graphene oxide(Sb2S3@RGO).The flower-like Sb2S3 and the Sb2S3@RGO nanosheets were tested as the counter electrode(CE)of dye-sensitized solar cells,and the latter exhibited a higher electrocatalytic property than the former owing to the introduction of graphene.The results from electrochemical tests indicated that the as-prepared Sb2S3@RGO nanosheets possess higher catalytic activity,charge-transfer ability,and electrochemical stability than Sb2S3,RGO,and Pt CEs.More notably,the power conversion efficiency of Sb2S3@RGO reached 8.17%,which was higher than that of the standard Pt CE(7.75%).展开更多
基金supported by the Major State Basic Research Development Program of China (No.2006CB202605)the National Natural Science Foundation of China (No.50473055)
文摘The ZnO-modified TiO2 electrode was prepared by adding Zn(CH3COO)2·2H2O to the TiO2 colloid during the sol-gel production process, and was used in dye-sensitized solar cells (DSCs). The open circuit voltage (Voc) and fill factor (if) of the cells were improved sig- nificantly. The performances of the ZnO-modified TiO2 electrode such as dark current, transient photocurrent, impedance, absorption spectra, and fiat band potential (Vfb) were investigated. It is found that the interface charge recombination impedance increases and Vfb shifts about 200 mV toward the cathodic potential. The effect mechanism of ZnO modification on the performance of DSCs may be that ZnO occupies the surface states of the TiO2 film.
文摘Mesoporous TiO2 (m-TiO2) nanoparticles were used to prepare the porous film electrodes for dye-sensitized solar cells, and a second metal oxide (MgO, ZnO, A1203, or NiO) modifi- cation was carried out by dipping the m-TiO2 electrode into their respective nitrate solution followed by annealing at 500 ℃. Experimental results indicated that the above second metal oxide modifications on m-TiO2 electrode are shown in all cases to act as barrier layer for the interracial charge transfer processes, but film electron transport and interfacial charge recombination characteristics under applied bias voltage were dependent significantly on the existing states and kinds of these second metal oxides. Those changes based on sec- ond metal oxide modifications showed good correlation with the current-voltage analyses of dye-sensitized solar cell, and all modifications were found to increase the open-circuit photo- voltage in various degrees, while the MgO, ZnO, and NiO modifications result in 23%, 13%, and 6% improvement in cell conversion efficiency, respectively. The above observations indi- cate that controlling the charge transport and recombination is very important to improve the photovoltaic performance of TiO2-based solar cell.
文摘Dye-sensitized solar cells (DSSCs) with ZnO spin-coated TiO2 photo-electrodes are compared to DSSC with a bare TiO2 photo-electrode. It is demonstrated that the deposited ZnO of controlled amount, by varying the precursor concentration in the coating sol, can indeed enhance the performance of the DSSC. The measured power conversion efficiency shows a maximum around the precursor concentration 0.1 M and falls down sharply to 0% beyond this point. The results are interpreted on the basis of two competing factors: At ZnO concentrations less than 0.1 M, the formation of an energy barrier increases the photocurrent by reducing the rate of interfacial back-recombination. At ZnO concentrations greater than 0.1 M, the screening of the TiO2 film by thicker ZnO layers decreases the photocurrent through the reduction of TiO2 dye-adsorption efficiency.
基金Supported by the National Natural Science Foundation of China(No. 5 0 0 82 0 0 3,5 0 372 0 2 2 ) and the Natural ScienceFoundation of Fujian Province,China(No. 2 0 0 1I0 0 6,E0 2 10 0 2 3)
文摘A dye-sensitized nanocrystalline TiO 2 solar cell(DYSC) was assembled, of which counter electrode was modified already by platinum, nickel and carbon. It was found that the DYSC had better photoelectric performance when the electrode was modified by platinum than by nickel and carbon. The influence of the incidence light wavelength on the incidence monochromatic photoelectric conversion efficiency(IPCE) was investigated. The result shows that the IPCE mainly depends on the short-circuit current density(I SC) of a DYSC, and the IPCE reaches 48.32% under the irradiation with the wavelength of 560 nm when the counter electrode of a DYSC was modified by platinum. The influence of incident light intensity on the photoelectric properties of a DYSC was also investigated. It was found that the I SC and open-circuit voltage(V OC) increased and the fill factor(f f) of the DYSC decreased with the increase of the incident light intensity.
文摘Composite nanoporous electrode SnO2/TiO2 was fabricated for the dye sensitized solar cell (DSSC) with N3 (Cis-Ru). After introducing of TiO2, the open-circuit photovoltage (Voc) was higher than that of the pure SnO2 electrode, while short-circuit photocurrent (Isc) was varied with the ratio of the TiO2. Appropriate content of the TiO2 can be beneficial to the efficiency of the solar cell, and it gives negative impact on the composite electrode when the content of TiO2 is higher.
基金This research was funded by National Natural Science Foundation of China (Grant No. 21676099)the Fundamental Research Funds for the Central Universities, South China University of Technology
文摘Photocatalytic oxidation desulfurization has become a research hotspot in recent years because of mild reaction conditions, less energy consumption and high selectivity. In this paper, TiO2 was loaded onto SBA-15 molecular sieves and sensitized with organic dyes(2, 9-dichloroquinacridone, DCQ) to extend its spectral response range from ultraviolet light to visible light. The catalyst DCQ-X%TiO2@SBA-15 was characterized by BET measurements, X-ray diffraction, Fourier transform infrared spectroscopy and Ultraviolet-visible diffuse reflection spectra, and then it was applied for photocatalytic oxidation desulfurization of gasoline. The effects of different catalytic systems, TiO2 concentration, catalyst dosage, and different model sulfur compounds on catalytic desulfurization performance were investigated. Experimental results show that DCQ-TiO2@SBA-15 has a better performance than the unsensitized TiO2@SBA-15, and the desulfurization rate can reach up to 96.1% in a reaction time of 90 min.
文摘Titanium tetrachloride (TiCl4) treatment was employed to TiO2 coating deposited on fluoride-doped tin oxide (FTO) conducting glass and indium oxide doped tin oxide (ITO) conducting glass, respectively. The nano-crystalline TiO2 coating was deposited using a composite powder composed of polyethylene glycol (PEG) and 25 nm TiO2 particles by vacuum cold spraying (VCS) process. A commercial N-719 dye was used to adsorb on the surface of TiO2 coating to prepare TiO2 electrode, which was applied to assemble dye-sensitized solar cell (DSC). The cell performance was measured under simulated solar light at an intensity of 100 mW·cm-2. Results show that with an FTO substrate the DSC composed of a VCS TiO2 electrode untreated by TiCl4 gives a short-circuit current density of 13.1 mA·cm-2 and an open circuit voltage of 0.60 V corresponding to an overall conversion efficiency of 4.4%. It is found that after TiCl4 treatment to the VCS TiO2 electrode with an FTO substrate, the short circuit current density of the cell increases by 31%, the open-circuit voltage increases by 60 mV and a higher conversion yield of 6.5% was obtained. However, when an ITO substrate is used to deposit TiO2 coating by VCS, after TiCl4 treatment, the conversion efficiency of the assembled cell reduces slightly due to corrosion of the conducting layer on the ITO glass by TiCl4.
基金the support provided by the National High Technology Research and Development Program 863 (No.2006AA05Z417)Science and Technology Platform Construction Project of Dalian (2010-354)+4 种基金the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (No.2013-70)‘‘Shu Guang’’ project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (No.13SG55)National Natural Science Foundation of China (NSFC) (No.61376009)Science and Technology Commission of Shanghai Municipality (No.14YF1410500)Shanghai Young Teacher Supporting Foundation (No.ZZEGD14011)
文摘A bi-layer photoanode for dye-sensitized solar cell(DSSC) was fabricated, in which TiO_2 hollow spheres(THSs) were designed as a scattering layer and P25/multi-walled carbon nanotubes(MWNTs) as an under-layer. The THSs were synthesized by a sacrifice template method and showed good light scattering ability as an over-layer of the photoanode. MWNTs were mixed with P25 to form an under-layer of the photoanode to improve the electron transmission ability of the photoanode. The power conversion efficiency of this kind of DSSC with bi-layer was enhanced to 5.13 %,which is 14.25 % higher than that of pure P25 DSSC.Graphical Abstract A bi-layer composite photoanode based on P25/MWNTs-THSs with improved light scattering and electron transmission, which will provide a new insight into fabrication and structure design of highly efficient dyesensitized solar cells.
文摘Yb-doped TiO2 pastes with different Yb/TiO2 weight ratios are prepared in the sol-gel process to obtain dyesensitized solar cells (DSCs). The nanocrystalline size of Yb-TiO2 becomes smaller and the lattice parameters change. Lattice distortion is observed and dark current is detected. It is found that a part of Yb existing as insulating oxide Yb2O3 state acts as barrier layers at the electrode-electrolyte interface to suppress charge recombination. A Yb-doped TiO2 electrode applied in DSCs leads to a higher open-circuit voltage and a higher fill factor. How the Yb-doped TiO2 films affect the photovoltaic response of DSCs is discussed.
基金Project supported by the Fundamental Research Funds for the Central Universities,China(Grant No.2013XK07)
文摘TiO2 is a wide band gap semiconductor with important applications in photovoltaic cells. Vertically aligned Tit2 nanorod arrays (NRs) are grown on the fluorine-doped tin oxide (FTO) substrates by a multicycle hydrothermal synthesis process. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and selected-area electron diffraction (SAED). It is found that dye-sensitized solar cells (DSSCs) assembled by the as-prepared Tit2 single-crystal NRs exhibit different trends under the condition of different nucleation and growth concentrations. Optimum cell performance is obtained with high nucleation concentration and low growth cycle concentration. The efficiency enhancement is mainly attributed to the improved specific surface area of the nanorod.
基金The authors appreciate the generous financial support of this work by the Major State Basic Research Development Program(Grant No.G200028205)Innovative Foundation of the Chinese Academy of Science(Grant No.KGCX2-303-02)+1 种基金the National Natural Science Foundation of China(Grant No.50221201)High-Tech Research and Development of China Program(Grant No.2002 AA302403).
文摘Nanocrystalline TiO2 thin films were successfully prepared by a new “water-cooked” method on both conductive glass substrates and flexible substrates at low temperature. Dye-sensitized solar cells based on these films have exhibited high overall light-to-electricity conversion efficiencies of 4.67 % and 1.94 % on conductive glass substrate and flexible substrate, respectively, under the illumination at 100 mW/cm2.
基金supported by The National Natural Science Foundation of China(No.B59883004)partially supported by the Research Institute of Innovative Technology for the Earth(RITE),Japan.
文摘A dye-sensitized TiO2 solid solar cell, which contains poly(4-vinylphenyloxy-methyltriphenylamine) in hole transport layer (HTL) doped with LiSCN and methyl-hexyl-imidazolium iodide (MHIml), was prepared. The solar cell shows that the conversion efficiency is 0.59%, Jsc is 3.03mA/cm2, and V^ is 0.53V at 1 sun light intensity.
基金supported by Ministry of New and Renewable Energy(MNRE)the Solar Energy Research Initiative(SERI),respectively.of Govt.of India
文摘We report a facile method for the fabrication of TiO2 nanofiber-nanoparticle composite (FP) via. simulta- neous electrospraying and electrospinning for dye-sensitized solar cell (DSC) applications. The loading of nanoparticles on the fibers is controlled by varying their feed rates during electrospinning. The FP composites having three different particle loading are prepared by the methodology and the FP with the highest particle loading (denoted as FP-3 in the manuscript) showed the best overall efficiency of 9.15% in comparison to the other compositions of the FP (FP-2, 8.15% and FP-1, Z51%, respectively) and nanofibers (F) and nanoparticles (P) separately (7.21 and 7.81, respectively). All the material systems are characterized by spec- troscopy, microscopy, surface area measurements and the devices are characterized by current-voltage (I-V), incident photon-to-current conversion efficiency (IPCE), electrochemical impedance measurements, etc. I-V, dye-loading and reflectance measurements throw light on the overall performance of the DSC devices.
文摘YiO2 nanorods have been prepared on ITO substrates by dc reactive magnetron sputtering technique. The hydroxyl groups have been introduced on the nanorods surface. The structure and the optical properties of these nanorods have been studied. The dye-sensitized solar cells (DSSCs) have been assembled using these TiO2 nanorods as photoelectrode. And the effect of the hydroxyl groups on the properties of the photoelectric conversion of the DSSCs has been studied.
基金supported by the Science and Technology Developmental Plan of Jilin Province(No.20170520145JH)
文摘Here, a series of starburst triphenylamine(WD8) derivatives for dye-sensitized solar cells(DSSCs) applications have been designed. The frontier molecular orbitals(FMOs) property, absorption spectra, and charge transfer rate property of WD8 and its derivatives were simulated. We also evaluated the FMOs energies and absorption spectra of WD8 and its derivatives with the TiO2 cluster. The simulation results show that the phenothiazine-triphenylamine and 2-cyanoacetic acid groups in the ortho-position will increase the HOMO energy, decrease the LUMO energy, and narrow the HOMO-LUMO gap of WD8. The charge injection from WD8 and its derivatives to TiO2 should be more favorable. The phenothiazine-triphenylamine and 2-cyanoacetic acid groups in the ortho-position will decrease the electron and hole injection barriers of WD8. The phenothiazinetriphenylamine and 2-cyanoacetic acid groups in the ortho-position will improve the absorption spectra properties of WD8. The absorption spectra of WD8 and its derivatives with the TiO2 cluster would have a red shift. The phenothiazine-triphenylamine and 2-cyanoacetic acid groups in the ortho-position will increase the charge transfer property of WD8.
基金the financial support of this work by the Major State Basic Research Development Program(No.2006CB202605)High-Tech Research and Development of China Program(No.2007AA05Z439)+1 种基金the National Nature Science Foundation of China(No.50221201)Innovative Foundation of the Center for Molecular Science,Chinese Academy of Sciences(No.CMS-CX200718).
文摘The screen-printed nanoporous TiO2 thin film was employed to fabricate dye-sensitized solid-state solar cells using CuI as hole-transport materials. The solar cell based on nanoporous TiO2 thin film with large pores formed by the addition of polystyrene balls with diameter of 200 nm to the TiO2 paste exhibits photovoltaic performance enhancement, which is attributed to the good contact of CuI with surface of dye-sensitized thin film due to easy penetration of CuI in the film with large pores.
基金Supported by the National Natural Science Foundation of China(Nos. 60271020 and 20125513)
文摘Particular kinds of TiO2 nanocrystalline electrodes were sensitized by aluminum phthalocyanines modified with sulfonate groups [ Al(OH) PcSm ]. It was found that in the red region, the electrodes show obvious photoelectrical responses. The surface photovoltage spectra and photocurrent action spectra indicate that in the red region, the monomers of aluminum phthalocyanines have a greater influence on the determination of the photoelectrical response of TiO2 electrodes than the dimers. The dye-sensitized solar cells were obtained by using the aluminum phthalocyaninessensitized TiO2 electrodes and Pt electrodes, which have an open circuit photovoltage of 360 mV, a short circuit photocurrent of 39. 4 μA/cm^2 , a fill factor of 0. 54 and a maximum power output of 7.65 μW/cm^2 under a light intensity of 50 mW/cm^2.
文摘Spherical TiO2 particles (60 nm) were obtained by using a Triton X-100. The surfactant was employed in two stages, i.e., in the hydrolysis of TiCl4 and then in the precipitation of the corresponding Ti (IV) polymers. The advantages of such spherical TiO2 particles were examined in terms of photovoltaic characteristics of a dye-sensitized solar cell (DSSC) using Orange IV dye as sensitizer. Significantly higher overall solar energy conversion efficiency was obtained for a DSSC using the film of these spherical TiO2 particles, compared with that of a cell using a TiO2 film prepared without surfactant.
文摘The electrochemical behavior of vitamin C(ascorbic acid or AA) is investigated on the surface of a carbon-paste electrode modified with TiO2 nanoparticles and 2,2'-(1,2 butanediylbis(nitriloethylidyne))-bis-hydroquinone(BBNBH).The prepared modified electrode showed an efficient catalytic role in the electrochemical oxidation of AA,leading to remarkable decrease in oxidation overpotential and enhancement of the kinetics of the electrode reaction.This modified electrode exhibits well-separated oxidation peaks for AA and uric acid(UA).The modified electrode is successfully applied for the accurate determination of AA in pharmaceutical preparations.
基金funded by the Tianjin science and technology support key projects(18YFZCSF00500)the National Science Fund for Distinguished Young Scholars(21425729)the National Natural Science Foundation of China
文摘In this work,we initially synthesized Sb2S3 with uniform flower-like structures via a facile hydrothermal method through the modification of the Sb source and pH value.Afterward,Sb2S3 with a nanosheet structure was successfully synthesized on reduced graphene oxide(Sb2S3@RGO).The flower-like Sb2S3 and the Sb2S3@RGO nanosheets were tested as the counter electrode(CE)of dye-sensitized solar cells,and the latter exhibited a higher electrocatalytic property than the former owing to the introduction of graphene.The results from electrochemical tests indicated that the as-prepared Sb2S3@RGO nanosheets possess higher catalytic activity,charge-transfer ability,and electrochemical stability than Sb2S3,RGO,and Pt CEs.More notably,the power conversion efficiency of Sb2S3@RGO reached 8.17%,which was higher than that of the standard Pt CE(7.75%).