In current research on task offloading and resource scheduling in vehicular networks,vehicles are commonly assumed to maintain constant speed or relatively stationary states,and the impact of speed variations on task ...In current research on task offloading and resource scheduling in vehicular networks,vehicles are commonly assumed to maintain constant speed or relatively stationary states,and the impact of speed variations on task offloading is often overlooked.It is frequently assumed that vehicles can be accurately modeled during actual motion processes.However,in vehicular dynamic environments,both the tasks generated by the vehicles and the vehicles’surroundings are constantly changing,making it difficult to achieve real-time modeling for actual dynamic vehicular network scenarios.Taking into account the actual dynamic vehicular scenarios,this paper considers the real-time non-uniform movement of vehicles and proposes a vehicular task dynamic offloading and scheduling algorithm for single-task multi-vehicle vehicular network scenarios,attempting to solve the dynamic decision-making problem in task offloading process.The optimization objective is to minimize the average task completion time,which is formulated as a multi-constrained non-linear programming problem.Due to the mobility of vehicles,a constraint model is applied in the decision-making process to dynamically determine whether the communication range is sufficient for task offloading and transmission.Finally,the proposed vehicular task dynamic offloading and scheduling algorithm based on muti-agent deep deterministic policy gradient(MADDPG)is applied to solve the optimal solution of the optimization problem.Simulation results show that the algorithm proposed in this paper is able to achieve lower latency task computation offloading.Meanwhile,the average task completion time of the proposed algorithm in this paper can be improved by 7.6%compared to the performance of the MADDPG scheme and 51.1%compared to the performance of deep deterministic policy gradient(DDPG).展开更多
Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which aredifficult to adapt to the uncertainty of source and load, and there are problems such as the inability to...Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which aredifficult to adapt to the uncertainty of source and load, and there are problems such as the inability to make dynamicdecisions continuously. This paper proposed a dynamic economic scheduling method for distribution networksbased on deep reinforcement learning. Firstly, the economic scheduling model of the new energy distributionnetwork is established considering the action characteristics of micro-gas turbines, and the dynamic schedulingmodel based on deep reinforcement learning is constructed for the new energy distribution network system with ahigh proportion of new energy, and the Markov decision process of the model is defined. Secondly, Second, for thechanging characteristics of source-load uncertainty, agents are trained interactively with the distributed networkin a data-driven manner. Then, through the proximal policy optimization algorithm, agents adaptively learn thescheduling strategy and realize the dynamic scheduling decision of the new energy distribution network system.Finally, the feasibility and superiority of the proposed method are verified by an improved IEEE 33-node simulationsystem.展开更多
The one-ladle technology requires an efficient ironmaking and steelmaking interface. The scheduling of the hot metal ladle in the steel plant determines the overall operational efficiency of the interface. Considering...The one-ladle technology requires an efficient ironmaking and steelmaking interface. The scheduling of the hot metal ladle in the steel plant determines the overall operational efficiency of the interface. Considering the strong uncertainties of real-world production environments, this work studies the dynamic scheduling problem of hot metal ladles and develops a data-driven three-layer approach to solve this problem. A dynamic scheduling optimization model of the hot metal ladle operation with a minimum average turnover time as the optimization objective is also constructed. Furthermore, the intelligent perception of industrial scenes and autonomous identification of disturbances, adaptive configuration of dynamic scheduling strategies, and real-time adjustment of schedules can be realized. The upper layer generates a demand-oriented prescheduling scheme for hot metal ladles. The middle layer adaptively adjusts this scheme to obtain an executable schedule according to the actual supply–demand relationship. In the lower layer, three types of dynamic scheduling strategies are designed according to the characteristics of the dynamic disturbance in the model:real-time flexible fine-tuning, local machine adjustment, and global rescheduling. Case test using 24 h production data on a certain day during the system operation of a steel plant shows that the method and system can effectively reduce the fluctuation and operation time of the hot metal ladle and improve the stability of the ironmaking and steelmaking interface production rhythm. The data-driven dynamic scheduling strategy is feasible and effective, and the proposed method can improve the operation efficiency of hot metal ladles.展开更多
Knowledge plays an active role in job-shop scheduling, especially in dynamic environments. A novel case-based immune framework was developed for static and dynamic job-shop problems, using the associative memory and k...Knowledge plays an active role in job-shop scheduling, especially in dynamic environments. A novel case-based immune framework was developed for static and dynamic job-shop problems, using the associative memory and knowledge reuse from case-based reasoning (CBR) and immune response mechanisms. A 2-level similarity index which combines both job routing and problem solution characteristics based on DNA matching ideas was defined for both the CBR and immune algorithms. A CBR-embedded immune algorithms (CBR-IAs) framework was then developed focusing on case retrieval and adaptation methods. In static environments, the CBR-IAs have excellent population diversity and fast convergence which are necessary for dynamic problems with jobs arriving and leaving continually. The results with dy-namic scheduling problems further confirm the CBR-IAs effectiveness as a problem solving method with knowledge reuse.展开更多
Cloud computing distributes task-parallel among the various resources.Applications with self-service supported and on-demand service have rapid growth.For these applications,cloud computing allocates the resources dyn...Cloud computing distributes task-parallel among the various resources.Applications with self-service supported and on-demand service have rapid growth.For these applications,cloud computing allocates the resources dynami-cally via the internet according to user requirements.Proper resource allocation is vital for fulfilling user requirements.In contrast,improper resource allocations result to load imbalance,which leads to severe service issues.The cloud resources implement internet-connected devices using the protocols for storing,communi-cating,and computations.The extensive needs and lack of optimal resource allo-cating scheme make cloud computing more complex.This paper proposes an NMDS(Network Manager based Dynamic Scheduling)for achieving a prominent resource allocation scheme for the users.The proposed system mainly focuses on dimensionality problems,where the conventional methods fail to address them.The proposed system introduced three–threshold mode of task based on its size STT,MTT,LTT(small,medium,large task thresholding).Along with it,task mer-ging enables minimum energy consumption and response time.The proposed NMDS is compared with the existing Energy-efficient Dynamic Scheduling scheme(EDS)and Decentralized Virtual Machine Migration(DVM).With a Network Manager-based Dynamic Scheduling,the proposed model achieves excellence in resource allocation compared to the other existing models.The obtained results shows the proposed system effectively allocate the resources and achieves about 94%of energy efficient than the other models.The evaluation metrics taken for comparison are energy consumption,mean response time,percentage of resource utilization,and migration.展开更多
Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and th...Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and then the problem is simplified asthe asymmetrical travelingsalesman problem with time windows. The rolling horizon scheduling algorithm (RHSA) to solve thisdynamic problem is proposed. By the rolling of time horizon, the RHSA can adapt to the problem'sdynamic change and reduce the computation time by dealing with only part of the customers in eachrolling time horizon. Then, its three factors, the current customer window, the scheduling of thecurrent customer window and the rolling strategy, are analyzed. The test results demonstrate theeffectiveness of the RHSA to solve the dynamic vehicle scheduling problem.展开更多
The meta-heuristic algorithm with local search is an excellent choice for the job-shop scheduling problem(JSP).However,due to the unique nature of the JSP,local search may generate infeasible neighbourhood solutions.I...The meta-heuristic algorithm with local search is an excellent choice for the job-shop scheduling problem(JSP).However,due to the unique nature of the JSP,local search may generate infeasible neighbourhood solutions.In the existing literature,although some domain knowledge of the JSP can be used to avoid infeasible solutions,the constraint conditions in this domain knowledge are sufficient but not necessary.It may lose many feasible solutions and make the local search inadequate.By analysing the causes of infeasible neighbourhood solutions,this paper further explores the domain knowledge contained in the JSP and proposes the sufficient and necessary constraint conditions to find all feasible neighbourhood solutions,allowing the local search to be carried out thoroughly.With the proposed conditions,a new neighbourhood structure is designed in this paper.Then,a fast calculation method for all feasible neighbourhood solutions is provided,significantly reducing the calculation time compared with ordinary methods.A set of standard benchmark instances is used to evaluate the performance of the proposed neighbourhood structure and calculation method.The experimental results show that the calculation method is effective,and the new neighbourhood structure has more reliability and superiority than the other famous and influential neighbourhood structures,where 90%of the results are the best compared with three other well-known neighbourhood structures.Finally,the result from a tabu search algorithm with the new neighbourhood structure is compared with the current best results,demonstrating the superiority of the proposed neighbourhood structure.展开更多
This paper researches the adaptive scheduling problem of multiple electronic support measures(multi-ESM) in a ground moving radar targets tracking application. It is a sequential decision-making problem in uncertain e...This paper researches the adaptive scheduling problem of multiple electronic support measures(multi-ESM) in a ground moving radar targets tracking application. It is a sequential decision-making problem in uncertain environment. For adaptive selection of appropriate ESMs, we generalize an approximate dynamic programming(ADP) framework to the dynamic case. We define the environment model and agent model, respectively. To handle the partially observable challenge, we apply the unsented Kalman filter(UKF) algorithm for belief state estimation. To reduce the computational burden, a simulation-based approach rollout with a redesigned base policy is proposed to approximate the long-term cumulative reward. Meanwhile, Monte Carlo sampling is combined into the rollout to estimate the expectation of the rewards. The experiments indicate that our method outperforms other strategies due to its better performance in larger-scale problems.展开更多
One of the challenging scheduling problems in Cloud data centers is to take the allocation and migration of reconfigurable virtual machines as well as the integrated features of hosting physical machines into consider...One of the challenging scheduling problems in Cloud data centers is to take the allocation and migration of reconfigurable virtual machines as well as the integrated features of hosting physical machines into consideration. We introduce a Dynamic and Integrated Resource Scheduling algorithm (DAIRS) for Cloud data centers. Unlike traditional load-balance scheduling algorithms which often consider only one factor such as the CPU load in physical servers, DAIRS treats CPU, memory and network bandwidth integrated for both physical machines and virtual machines. We develop integrated measurement for the total imbalance level of a Cloud datacenter as well as the average imbalance level of each server. Simulation results show that DAIRS has good performance with regard to total imbalance level, average imbalance level of each server, as well as overall running time.展开更多
Based on the analysis of collective activities of ant colonies, the typicalexample of swarm intelligence, a new approach to construct swarm intelligence basedmulti-agent-system (SMAS) for dynamic real-time scheduling ...Based on the analysis of collective activities of ant colonies, the typicalexample of swarm intelligence, a new approach to construct swarm intelligence basedmulti-agent-system (SMAS) for dynamic real-time scheduling for semiconductor wafer fab is proposed.The relevant algorithm, pheromone-based dynamic real-time scheduling algorithm (PBDR), is given.MIMAC test bed data set mini-fab is used to compare PBDR with FIFO (first in first out),SRPT(shortest remaining processing time) and CR(critical ratio) under three different release rules,i.e. deterministic rule, Poisson rule and CONWIP (constant WIP). It is shown that PBDR is prior toFIFO, SRPT and CR with better performance of cycle time, throughput, and on-time delivery,especially for on-time delivery performance.展开更多
The uninterrupted operation of the quay crane(QC)ensures that the large container ship can depart port within laytime,which effectively reduces the handling cost for the container terminal and ship owners.The QC waiti...The uninterrupted operation of the quay crane(QC)ensures that the large container ship can depart port within laytime,which effectively reduces the handling cost for the container terminal and ship owners.The QC waiting caused by automated guided vehicles(AGVs)delay in the uncertain environment can be alleviated by dynamic scheduling optimization.A dynamic scheduling process is introduced in this paper to solve the AGV scheduling and path planning problems,in which the scheduling scheme determines the starting and ending nodes of paths,and the choice of paths between nodes affects the scheduling of subsequent AGVs.This work proposes a two-stage mixed integer optimization model to minimize the transportation cost of AGVs under the constraint of laytime.A dynamic optimization algorithm,including the improved rule-based heuristic algorithm and the integration of the Dijkstra algorithm and the Q-Learning algorithm,is designed to solve the optimal AGV scheduling and path schemes.A new conflict avoidance strategy based on graph theory is also proposed to reduce the probability of path conflicts between AGVs.Numerical experiments are conducted to demonstrate the effectiveness of the proposed model and algorithm over existing methods.展开更多
In this paper, a dynamic generation scheduling model is formulated, aiming at minimizing the costs of power generation and taking into account the constraints of thermal power units and spinning reserve in wind power ...In this paper, a dynamic generation scheduling model is formulated, aiming at minimizing the costs of power generation and taking into account the constraints of thermal power units and spinning reserve in wind power integrated systems. A dynamic solving method blended with particle swarm optimization algorithm is proposed. In this method, the solution space of the states of unit commitment is created and will be updated when the status of unit commitment changes in a period to meet the spinning reserve demand. The thermal unit operation constrains are inspected in adjacent time intervals to ensure all the states in the solution space effective. The particle swarm algorithm is applied in the procedure to optimize the load distribution of each unit commitment state. A case study in a simulation system is finally given to verify the feasibility and effectiveness of this dynamic optimization algorithm.展开更多
Due to no effective rescheduling method in hull curved block construction planning, existing scheduling planning can’t be applied in practical production effectively. Two-dimensional layout and dynamic attributes of ...Due to no effective rescheduling method in hull curved block construction planning, existing scheduling planning can’t be applied in practical production effectively. Two-dimensional layout and dynamic attributes of block construction planning are considered to develop a spatial rescheduling method, which is based on the spatial points searching rule and the particle swarm optimization(PSO) algorithm. A dynamic spatial rescheduling method is proposed to solve the manufacturing problem of rush-order blocks. Through spatial rescheduling, the rescheduling start time, the current processing information set and rescheduling blocks set can be obtained automatically. By using and updating the data of these sets, the rescheduling method combines the PSO algorithm with the spatial points searching rule to determine the rescheduling start time and layout of the blocks. Three types of dynamic events, including rush-order block delay, existing block delay and existing block position changes, are used to address problems with different function goals by setting different function weights. Finally, simulations based on three types of rush-order block events are performed to validate this method, including single rush-order block, multi rush-order blocks at the same time and multi rush-order blocks at different times. The simulation results demonstrate that this method can solve the rush-order block problems in hull block construction and reduce the interference to the existing manufacturing schedule. The proposed research provides a new rescheduling method and helps instruct scheduler to make production planning in hull block construction.展开更多
A dynamic database based dynamic scheduling system is proposed.As the schedule is being preformed, the scheduling task data in the dynamic database is updated timely.Genetic algorithm (GA) is employed for generating o...A dynamic database based dynamic scheduling system is proposed.As the schedule is being preformed, the scheduling task data in the dynamic database is updated timely.Genetic algorithm (GA) is employed for generating optimised production plan quickly and easily in response to changes on the shop floor. The current status of the shop is considered while rescheduling, and new plan is used in conjunction with the existing schedule to improve the effeciency of flexble manufacturing systems. Simulation results demonstrate the effectiveness of the proposed system.展开更多
In this paper,we consider a multi-UAV surveillance scenario where a team of unmanned aerial vehicles(UAVs)synchronously covers an area for monitoring the ground conditions.In this scenario,we adopt the leader-follower...In this paper,we consider a multi-UAV surveillance scenario where a team of unmanned aerial vehicles(UAVs)synchronously covers an area for monitoring the ground conditions.In this scenario,we adopt the leader-follower control mode and propose a modified Lyapunov guidance vector field(LGVF)approach for improving the precision of surveillance trajectory tracking.Then,in order to adopt to poor communication conditions,we propose a prediction-based synchronization method for keeping the formation consistently.Moreover,in order to adapt the multi-UAV system to dynamic and uncertain environment,this paper proposes a hierarchical dynamic task scheduling architecture.In this architecture,we firstly classify all the algorithms that perform tasks according to their functions,and then modularize the algorithms based on plugin technology.Afterwards,integrating the behavior model and plugin technique,this paper designs a three-layer control flow,which can efficiently achieve dynamic task scheduling.In order to verify the effectiveness of our architecture,we consider a multi-UAV traffic monitoring scenario and design several cases to demonstrate the online adjustment from three levels,respectively.展开更多
Currently, the article analyzes the CAN bus's rule of priority's arbitration bit by bit without destroy. It elicits the conclusion that if static priority based on the affirmatory system model is used, the lower pri...Currently, the article analyzes the CAN bus's rule of priority's arbitration bit by bit without destroy. It elicits the conclusion that if static priority based on the affirmatory system model is used, the lower priority's messages will be delayed considerably more, even some data will be lost when the bus's bandwidth is widely used. The scheduling cannot be modified neither during the system when static priority is used. The dynamic priority promoting method and the math model of SQSA and SQMA are presented; it analyzes the model's rate of taking in and sending out in large quantities, the largest delay, the problems and solutions when using SQMA. In the end, it is confirmed that the method of improving dynamic priority has good performances on the network rate of taking in and sending out in large quantities, the average delay, and the rate of network usage by emulational experiments.展开更多
Prior research on the resilience of critical infrastructure usually utilizes the network model to characterize the structure of the components so that a quantitative representation of resilience can be obtained. Parti...Prior research on the resilience of critical infrastructure usually utilizes the network model to characterize the structure of the components so that a quantitative representation of resilience can be obtained. Particularly, network component importance is addressed to express its significance in shaping the resilience performance of the whole system. Due to the intrinsic complexity of the problem, some idealized assumptions are exerted on the resilience-optimization problem to find partial solutions. This paper seeks to exploit the dynamic aspect of system resilience, i.e., the scheduling problem of link recovery in the post-disruption phase.The aim is to analyze the recovery strategy of the system with more practical assumptions, especially inhomogeneous time cost among links. In view of this, the presented work translates the resilience-maximization recovery plan into the dynamic decisionmaking of runtime recovery option. A heuristic scheme is devised to treat the core problem of link selection in an ongoing style.Through Monte Carlo simulation, the link recovery order rendered by the proposed scheme demonstrates excellent resilience performance as well as accommodation with uncertainty caused by epistemic knowledge.展开更多
An adaptive dwell scheduling algorithm for phased array radar(PAR)is proposed in this paper.The concept of online dynamic template is introduced,based on which a general pulse interleaving technique for PAR is put for...An adaptive dwell scheduling algorithm for phased array radar(PAR)is proposed in this paper.The concept of online dynamic template is introduced,based on which a general pulse interleaving technique for PAR is put forward.The pulse interleaving condition of the novel pulse interleaving is more intuitive and general.The traditional adaptive dwell scheduling algorithm combined with the general novel pulse interleaving technique results in the online adaptive dwell scheduling based on dynamic template for PAR is given.The proposed algorithm is suitable for radar tasks with multiple pulse repetition intervals(PRIs),which can be utilized in the actual radar system.For the purpose of further improving the scheduling efficiency,an efficient version is proposed.Simulation results demonstrate the effectiveness of the proposed algorithm and the efficient one.The proposed efficient algorithm can improve the time utilization ratio(TUR)by 9%,the hit value ratio(HVR)by 3.5%,and reduce the task drop ratio(TDR)by 6%in comparison with existing dwell scheduling algorithms considering pulse interleaving in PAR and the proposed efficient one.展开更多
A new static task scheduling algorithm named edge-zeroing based on dynamic critical paths is proposed. The main ideas of the algorithm are as follows: firstly suppose that all of the tasks are in different clusters; s...A new static task scheduling algorithm named edge-zeroing based on dynamic critical paths is proposed. The main ideas of the algorithm are as follows: firstly suppose that all of the tasks are in different clusters; secondly, select one of the critical paths of the partially clustered directed acyclic graph; thirdly, try to zero one of graph communication edges; fourthly, repeat above three processes until all edges are zeroed; finally, check the generated clusters to see if some of them can be further merged without increasing the parallel time. Comparisons of the previous algorithms with edge-zeroing based on dynamic critical paths show that the new algorithm has not only a low complexity but also a desired performance comparable or even better on average to much higher complexity heuristic algorithms.展开更多
A dynamic advanced planning and scheduling (DAPS) problem is addressed where new orders arrive on a continuous basis. A periodic policy with frozen interval is adopted to increase stability on the shop floor. A gene...A dynamic advanced planning and scheduling (DAPS) problem is addressed where new orders arrive on a continuous basis. A periodic policy with frozen interval is adopted to increase stability on the shop floor. A genetic algorithm is developed to find a schedule at each rescheduling point for both original orders and new orders that both production idle time and penalties on tardiness and earliness of orders are minimized. The proposed methodology is tested on a small example to illustrate the effect of the frozen interval. The results indicate that the suggested approach can improve the schedule stability while retaining efficiency.展开更多
文摘In current research on task offloading and resource scheduling in vehicular networks,vehicles are commonly assumed to maintain constant speed or relatively stationary states,and the impact of speed variations on task offloading is often overlooked.It is frequently assumed that vehicles can be accurately modeled during actual motion processes.However,in vehicular dynamic environments,both the tasks generated by the vehicles and the vehicles’surroundings are constantly changing,making it difficult to achieve real-time modeling for actual dynamic vehicular network scenarios.Taking into account the actual dynamic vehicular scenarios,this paper considers the real-time non-uniform movement of vehicles and proposes a vehicular task dynamic offloading and scheduling algorithm for single-task multi-vehicle vehicular network scenarios,attempting to solve the dynamic decision-making problem in task offloading process.The optimization objective is to minimize the average task completion time,which is formulated as a multi-constrained non-linear programming problem.Due to the mobility of vehicles,a constraint model is applied in the decision-making process to dynamically determine whether the communication range is sufficient for task offloading and transmission.Finally,the proposed vehicular task dynamic offloading and scheduling algorithm based on muti-agent deep deterministic policy gradient(MADDPG)is applied to solve the optimal solution of the optimization problem.Simulation results show that the algorithm proposed in this paper is able to achieve lower latency task computation offloading.Meanwhile,the average task completion time of the proposed algorithm in this paper can be improved by 7.6%compared to the performance of the MADDPG scheme and 51.1%compared to the performance of deep deterministic policy gradient(DDPG).
基金the State Grid Liaoning Electric Power Supply Co.,Ltd.(Research on Scheduling Decision Technology Based on Interactive Reinforcement Learning for Adapting High Proportion of New Energy,No.2023YF-49).
文摘Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which aredifficult to adapt to the uncertainty of source and load, and there are problems such as the inability to make dynamicdecisions continuously. This paper proposed a dynamic economic scheduling method for distribution networksbased on deep reinforcement learning. Firstly, the economic scheduling model of the new energy distributionnetwork is established considering the action characteristics of micro-gas turbines, and the dynamic schedulingmodel based on deep reinforcement learning is constructed for the new energy distribution network system with ahigh proportion of new energy, and the Markov decision process of the model is defined. Secondly, Second, for thechanging characteristics of source-load uncertainty, agents are trained interactively with the distributed networkin a data-driven manner. Then, through the proximal policy optimization algorithm, agents adaptively learn thescheduling strategy and realize the dynamic scheduling decision of the new energy distribution network system.Finally, the feasibility and superiority of the proposed method are verified by an improved IEEE 33-node simulationsystem.
基金financially supported by the National Natural Science Foundation of China (No.51734004)the Key Program of the National Key R&D Program of China(No.2017YFB0304002)。
文摘The one-ladle technology requires an efficient ironmaking and steelmaking interface. The scheduling of the hot metal ladle in the steel plant determines the overall operational efficiency of the interface. Considering the strong uncertainties of real-world production environments, this work studies the dynamic scheduling problem of hot metal ladles and develops a data-driven three-layer approach to solve this problem. A dynamic scheduling optimization model of the hot metal ladle operation with a minimum average turnover time as the optimization objective is also constructed. Furthermore, the intelligent perception of industrial scenes and autonomous identification of disturbances, adaptive configuration of dynamic scheduling strategies, and real-time adjustment of schedules can be realized. The upper layer generates a demand-oriented prescheduling scheme for hot metal ladles. The middle layer adaptively adjusts this scheme to obtain an executable schedule according to the actual supply–demand relationship. In the lower layer, three types of dynamic scheduling strategies are designed according to the characteristics of the dynamic disturbance in the model:real-time flexible fine-tuning, local machine adjustment, and global rescheduling. Case test using 24 h production data on a certain day during the system operation of a steel plant shows that the method and system can effectively reduce the fluctuation and operation time of the hot metal ladle and improve the stability of the ironmaking and steelmaking interface production rhythm. The data-driven dynamic scheduling strategy is feasible and effective, and the proposed method can improve the operation efficiency of hot metal ladles.
基金the National Natural Science Foundation of China (No. 60004010) and the National High-Tech Research and Development (863) Program of China (No. 2001AA411020)
文摘Knowledge plays an active role in job-shop scheduling, especially in dynamic environments. A novel case-based immune framework was developed for static and dynamic job-shop problems, using the associative memory and knowledge reuse from case-based reasoning (CBR) and immune response mechanisms. A 2-level similarity index which combines both job routing and problem solution characteristics based on DNA matching ideas was defined for both the CBR and immune algorithms. A CBR-embedded immune algorithms (CBR-IAs) framework was then developed focusing on case retrieval and adaptation methods. In static environments, the CBR-IAs have excellent population diversity and fast convergence which are necessary for dynamic problems with jobs arriving and leaving continually. The results with dy-namic scheduling problems further confirm the CBR-IAs effectiveness as a problem solving method with knowledge reuse.
文摘Cloud computing distributes task-parallel among the various resources.Applications with self-service supported and on-demand service have rapid growth.For these applications,cloud computing allocates the resources dynami-cally via the internet according to user requirements.Proper resource allocation is vital for fulfilling user requirements.In contrast,improper resource allocations result to load imbalance,which leads to severe service issues.The cloud resources implement internet-connected devices using the protocols for storing,communi-cating,and computations.The extensive needs and lack of optimal resource allo-cating scheme make cloud computing more complex.This paper proposes an NMDS(Network Manager based Dynamic Scheduling)for achieving a prominent resource allocation scheme for the users.The proposed system mainly focuses on dimensionality problems,where the conventional methods fail to address them.The proposed system introduced three–threshold mode of task based on its size STT,MTT,LTT(small,medium,large task thresholding).Along with it,task mer-ging enables minimum energy consumption and response time.The proposed NMDS is compared with the existing Energy-efficient Dynamic Scheduling scheme(EDS)and Decentralized Virtual Machine Migration(DVM).With a Network Manager-based Dynamic Scheduling,the proposed model achieves excellence in resource allocation compared to the other existing models.The obtained results shows the proposed system effectively allocate the resources and achieves about 94%of energy efficient than the other models.The evaluation metrics taken for comparison are energy consumption,mean response time,percentage of resource utilization,and migration.
文摘Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and then the problem is simplified asthe asymmetrical travelingsalesman problem with time windows. The rolling horizon scheduling algorithm (RHSA) to solve thisdynamic problem is proposed. By the rolling of time horizon, the RHSA can adapt to the problem'sdynamic change and reduce the computation time by dealing with only part of the customers in eachrolling time horizon. Then, its three factors, the current customer window, the scheduling of thecurrent customer window and the rolling strategy, are analyzed. The test results demonstrate theeffectiveness of the RHSA to solve the dynamic vehicle scheduling problem.
基金Supported by National Natural Science Foundation of China(Grant Nos.U21B2029 and 51825502).
文摘The meta-heuristic algorithm with local search is an excellent choice for the job-shop scheduling problem(JSP).However,due to the unique nature of the JSP,local search may generate infeasible neighbourhood solutions.In the existing literature,although some domain knowledge of the JSP can be used to avoid infeasible solutions,the constraint conditions in this domain knowledge are sufficient but not necessary.It may lose many feasible solutions and make the local search inadequate.By analysing the causes of infeasible neighbourhood solutions,this paper further explores the domain knowledge contained in the JSP and proposes the sufficient and necessary constraint conditions to find all feasible neighbourhood solutions,allowing the local search to be carried out thoroughly.With the proposed conditions,a new neighbourhood structure is designed in this paper.Then,a fast calculation method for all feasible neighbourhood solutions is provided,significantly reducing the calculation time compared with ordinary methods.A set of standard benchmark instances is used to evaluate the performance of the proposed neighbourhood structure and calculation method.The experimental results show that the calculation method is effective,and the new neighbourhood structure has more reliability and superiority than the other famous and influential neighbourhood structures,where 90%of the results are the best compared with three other well-known neighbourhood structures.Finally,the result from a tabu search algorithm with the new neighbourhood structure is compared with the current best results,demonstrating the superiority of the proposed neighbourhood structure.
基金supported by the National Natural Science Foundation of China(6157328561305133)
文摘This paper researches the adaptive scheduling problem of multiple electronic support measures(multi-ESM) in a ground moving radar targets tracking application. It is a sequential decision-making problem in uncertain environment. For adaptive selection of appropriate ESMs, we generalize an approximate dynamic programming(ADP) framework to the dynamic case. We define the environment model and agent model, respectively. To handle the partially observable challenge, we apply the unsented Kalman filter(UKF) algorithm for belief state estimation. To reduce the computational burden, a simulation-based approach rollout with a redesigned base policy is proposed to approximate the long-term cumulative reward. Meanwhile, Monte Carlo sampling is combined into the rollout to estimate the expectation of the rewards. The experiments indicate that our method outperforms other strategies due to its better performance in larger-scale problems.
基金supported by Scientific Research Foundation for the Returned Overseas Chinese ScholarsState Education Ministry under Grant No.2010-2011 and Chinese Post-doctoral Research Foundation
文摘One of the challenging scheduling problems in Cloud data centers is to take the allocation and migration of reconfigurable virtual machines as well as the integrated features of hosting physical machines into consideration. We introduce a Dynamic and Integrated Resource Scheduling algorithm (DAIRS) for Cloud data centers. Unlike traditional load-balance scheduling algorithms which often consider only one factor such as the CPU load in physical servers, DAIRS treats CPU, memory and network bandwidth integrated for both physical machines and virtual machines. We develop integrated measurement for the total imbalance level of a Cloud datacenter as well as the average imbalance level of each server. Simulation results show that DAIRS has good performance with regard to total imbalance level, average imbalance level of each server, as well as overall running time.
基金This project is supported by National 973 Project of China (No.2002-CB312202) National Natural Science Foundation of China (No.60374005, No.60104004) Chinese Postdoctoral Fellowship Foundation.
文摘Based on the analysis of collective activities of ant colonies, the typicalexample of swarm intelligence, a new approach to construct swarm intelligence basedmulti-agent-system (SMAS) for dynamic real-time scheduling for semiconductor wafer fab is proposed.The relevant algorithm, pheromone-based dynamic real-time scheduling algorithm (PBDR), is given.MIMAC test bed data set mini-fab is used to compare PBDR with FIFO (first in first out),SRPT(shortest remaining processing time) and CR(critical ratio) under three different release rules,i.e. deterministic rule, Poisson rule and CONWIP (constant WIP). It is shown that PBDR is prior toFIFO, SRPT and CR with better performance of cycle time, throughput, and on-time delivery,especially for on-time delivery performance.
基金supported in part by the National Natural Science Foundation of China(61473053)the Science and Technology Innovation Foundation of Dalian,China(2020JJ26GX033)。
文摘The uninterrupted operation of the quay crane(QC)ensures that the large container ship can depart port within laytime,which effectively reduces the handling cost for the container terminal and ship owners.The QC waiting caused by automated guided vehicles(AGVs)delay in the uncertain environment can be alleviated by dynamic scheduling optimization.A dynamic scheduling process is introduced in this paper to solve the AGV scheduling and path planning problems,in which the scheduling scheme determines the starting and ending nodes of paths,and the choice of paths between nodes affects the scheduling of subsequent AGVs.This work proposes a two-stage mixed integer optimization model to minimize the transportation cost of AGVs under the constraint of laytime.A dynamic optimization algorithm,including the improved rule-based heuristic algorithm and the integration of the Dijkstra algorithm and the Q-Learning algorithm,is designed to solve the optimal AGV scheduling and path schemes.A new conflict avoidance strategy based on graph theory is also proposed to reduce the probability of path conflicts between AGVs.Numerical experiments are conducted to demonstrate the effectiveness of the proposed model and algorithm over existing methods.
文摘In this paper, a dynamic generation scheduling model is formulated, aiming at minimizing the costs of power generation and taking into account the constraints of thermal power units and spinning reserve in wind power integrated systems. A dynamic solving method blended with particle swarm optimization algorithm is proposed. In this method, the solution space of the states of unit commitment is created and will be updated when the status of unit commitment changes in a period to meet the spinning reserve demand. The thermal unit operation constrains are inspected in adjacent time intervals to ensure all the states in the solution space effective. The particle swarm algorithm is applied in the procedure to optimize the load distribution of each unit commitment state. A case study in a simulation system is finally given to verify the feasibility and effectiveness of this dynamic optimization algorithm.
基金supported by National Natural Science Foundation of China (Grant No. 70872076)Funding of Shanghai Municipal"Science Innovation Action Planning" of China (Grant No. 11dz1121803)
文摘Due to no effective rescheduling method in hull curved block construction planning, existing scheduling planning can’t be applied in practical production effectively. Two-dimensional layout and dynamic attributes of block construction planning are considered to develop a spatial rescheduling method, which is based on the spatial points searching rule and the particle swarm optimization(PSO) algorithm. A dynamic spatial rescheduling method is proposed to solve the manufacturing problem of rush-order blocks. Through spatial rescheduling, the rescheduling start time, the current processing information set and rescheduling blocks set can be obtained automatically. By using and updating the data of these sets, the rescheduling method combines the PSO algorithm with the spatial points searching rule to determine the rescheduling start time and layout of the blocks. Three types of dynamic events, including rush-order block delay, existing block delay and existing block position changes, are used to address problems with different function goals by setting different function weights. Finally, simulations based on three types of rush-order block events are performed to validate this method, including single rush-order block, multi rush-order blocks at the same time and multi rush-order blocks at different times. The simulation results demonstrate that this method can solve the rush-order block problems in hull block construction and reduce the interference to the existing manufacturing schedule. The proposed research provides a new rescheduling method and helps instruct scheduler to make production planning in hull block construction.
基金This project is supported by National Natural ScienceFoundation of China (No.70071017,59889505)
文摘A dynamic database based dynamic scheduling system is proposed.As the schedule is being preformed, the scheduling task data in the dynamic database is updated timely.Genetic algorithm (GA) is employed for generating optimised production plan quickly and easily in response to changes on the shop floor. The current status of the shop is considered while rescheduling, and new plan is used in conjunction with the existing schedule to improve the effeciency of flexble manufacturing systems. Simulation results demonstrate the effectiveness of the proposed system.
基金Project(2017YFB1301104)supported by the National Key Research and Development Program of ChinaProjects(61906212,61802426)supported by the National Natural Science Foundation of China。
文摘In this paper,we consider a multi-UAV surveillance scenario where a team of unmanned aerial vehicles(UAVs)synchronously covers an area for monitoring the ground conditions.In this scenario,we adopt the leader-follower control mode and propose a modified Lyapunov guidance vector field(LGVF)approach for improving the precision of surveillance trajectory tracking.Then,in order to adopt to poor communication conditions,we propose a prediction-based synchronization method for keeping the formation consistently.Moreover,in order to adapt the multi-UAV system to dynamic and uncertain environment,this paper proposes a hierarchical dynamic task scheduling architecture.In this architecture,we firstly classify all the algorithms that perform tasks according to their functions,and then modularize the algorithms based on plugin technology.Afterwards,integrating the behavior model and plugin technique,this paper designs a three-layer control flow,which can efficiently achieve dynamic task scheduling.In order to verify the effectiveness of our architecture,we consider a multi-UAV traffic monitoring scenario and design several cases to demonstrate the online adjustment from three levels,respectively.
基金supported by the National Natural Science Foundation of China (50421703)the National Key Laboratory of Electrical Engineering of Naval Engineering University
文摘Currently, the article analyzes the CAN bus's rule of priority's arbitration bit by bit without destroy. It elicits the conclusion that if static priority based on the affirmatory system model is used, the lower priority's messages will be delayed considerably more, even some data will be lost when the bus's bandwidth is widely used. The scheduling cannot be modified neither during the system when static priority is used. The dynamic priority promoting method and the math model of SQSA and SQMA are presented; it analyzes the model's rate of taking in and sending out in large quantities, the largest delay, the problems and solutions when using SQMA. In the end, it is confirmed that the method of improving dynamic priority has good performances on the network rate of taking in and sending out in large quantities, the average delay, and the rate of network usage by emulational experiments.
基金supported by the National Natural Science Foundation of China(51479158)the Fundamental Research Funds for the Central Universities(WUT:2018III061GX)
文摘Prior research on the resilience of critical infrastructure usually utilizes the network model to characterize the structure of the components so that a quantitative representation of resilience can be obtained. Particularly, network component importance is addressed to express its significance in shaping the resilience performance of the whole system. Due to the intrinsic complexity of the problem, some idealized assumptions are exerted on the resilience-optimization problem to find partial solutions. This paper seeks to exploit the dynamic aspect of system resilience, i.e., the scheduling problem of link recovery in the post-disruption phase.The aim is to analyze the recovery strategy of the system with more practical assumptions, especially inhomogeneous time cost among links. In view of this, the presented work translates the resilience-maximization recovery plan into the dynamic decisionmaking of runtime recovery option. A heuristic scheme is devised to treat the core problem of link selection in an ongoing style.Through Monte Carlo simulation, the link recovery order rendered by the proposed scheme demonstrates excellent resilience performance as well as accommodation with uncertainty caused by epistemic knowledge.
基金This work was supported by the National Natural Science Froundation of China(61032010).
文摘An adaptive dwell scheduling algorithm for phased array radar(PAR)is proposed in this paper.The concept of online dynamic template is introduced,based on which a general pulse interleaving technique for PAR is put forward.The pulse interleaving condition of the novel pulse interleaving is more intuitive and general.The traditional adaptive dwell scheduling algorithm combined with the general novel pulse interleaving technique results in the online adaptive dwell scheduling based on dynamic template for PAR is given.The proposed algorithm is suitable for radar tasks with multiple pulse repetition intervals(PRIs),which can be utilized in the actual radar system.For the purpose of further improving the scheduling efficiency,an efficient version is proposed.Simulation results demonstrate the effectiveness of the proposed algorithm and the efficient one.The proposed efficient algorithm can improve the time utilization ratio(TUR)by 9%,the hit value ratio(HVR)by 3.5%,and reduce the task drop ratio(TDR)by 6%in comparison with existing dwell scheduling algorithms considering pulse interleaving in PAR and the proposed efficient one.
文摘A new static task scheduling algorithm named edge-zeroing based on dynamic critical paths is proposed. The main ideas of the algorithm are as follows: firstly suppose that all of the tasks are in different clusters; secondly, select one of the critical paths of the partially clustered directed acyclic graph; thirdly, try to zero one of graph communication edges; fourthly, repeat above three processes until all edges are zeroed; finally, check the generated clusters to see if some of them can be further merged without increasing the parallel time. Comparisons of the previous algorithms with edge-zeroing based on dynamic critical paths show that the new algorithm has not only a low complexity but also a desired performance comparable or even better on average to much higher complexity heuristic algorithms.
基金This project is supported by the Hong Kong Polytechnic University,China(No,G-RGF9).
文摘A dynamic advanced planning and scheduling (DAPS) problem is addressed where new orders arrive on a continuous basis. A periodic policy with frozen interval is adopted to increase stability on the shop floor. A genetic algorithm is developed to find a schedule at each rescheduling point for both original orders and new orders that both production idle time and penalties on tardiness and earliness of orders are minimized. The proposed methodology is tested on a small example to illustrate the effect of the frozen interval. The results indicate that the suggested approach can improve the schedule stability while retaining efficiency.