Ground-based interferometric synthetic aperture radar(GB-InSAR)can take deformation measurement with a high accuracy.Partition of the GB-InSAR deformation map benefits analyzing the deformation state of the monitoring...Ground-based interferometric synthetic aperture radar(GB-InSAR)can take deformation measurement with a high accuracy.Partition of the GB-InSAR deformation map benefits analyzing the deformation state of the monitoring scene better.Existing partition methods rely on labelled datasets or single deformation feature,and they cannot be effectively utilized in GBInSAR applications.This paper proposes an improved partition method of the GB-InSAR deformation map based on dynamic time warping(DTW)and k-means.The DTW similarities between a reference point and all the measurement points are calculated based on their time-series deformations.Then the DTW similarity and cumulative deformation are taken as two partition features.With the k-means algorithm and the score based on multi evaluation indexes,a deformation map can be partitioned into an appropriate number of classes.Experimental datasets of West Copper Mine are processed to validate the effectiveness of the proposed method,whose measurement points are divided into seven classes with a score of 0.3151.展开更多
The traditional grey incidence degree is mainly based on the distance analysis methods, which is measured by the displacement difference between corresponding points between sequences. When some data of sequences are ...The traditional grey incidence degree is mainly based on the distance analysis methods, which is measured by the displacement difference between corresponding points between sequences. When some data of sequences are missing (inconsistency in the length of the sequences), the only way is to delete the longer sequences or to fill the shorter sequences. Therefore, some uncertainty is introduced. To solve this problem, by introducing three-dimensional grey incidence degree (3D-GID), a novel GID based on the multidimensional dynamic time warping distance (MDDTW distance-GID) is proposed. On the basis of it, the corresponding grey incidence clustering (MDDTW distance-GIC) method is constructed. It not only has the simpler computation process, but also can be applied to the incidence comparison between uncertain multidimensional sequences directly. The experiment shows that MDDTW distance-GIC is more accurate when dealing with the uncertain sequences. Compared with the traditional GIC method, the precision of the MDDTW distance-GIC method has increased nearly 30%.展开更多
Aiming at the diversity of hand gesture traces by different people,the article presents novel method called cluster dynamic time warping( CDTW),which is based on the main axis classification and sample clustering of i...Aiming at the diversity of hand gesture traces by different people,the article presents novel method called cluster dynamic time warping( CDTW),which is based on the main axis classification and sample clustering of individuals. This method shows good performance on reducing the complexity of recognition and strong robustness of individuals. Data acquisition is implemented on a triaxial accelerometer with 100 Hz sampling frequency. A database of 2400 traces was created by ten subjects for the system testing and evaluation. The overall accuracy was found to be 98. 84% for user independent gesture recognition and 96. 7% for user dependent gesture recognition,higher than dynamic time warping( DTW),derivative DTW( DDTW) and piecewise DTW( PDTW) methods.Computation cost of CDTW in this project has been reduced 11 520 times compared with DTW.展开更多
大部分系统使用深度学习技术完成语音识别任务,并取得良好的效果。但是,基于深度学习的语音识别技术对计算机硬件算力的要求较高,同时需要大量的语音样本对语音识别模型进行训练。针对这些问题,基于改进后的动态时间归整(Dynamic Time W...大部分系统使用深度学习技术完成语音识别任务,并取得良好的效果。但是,基于深度学习的语音识别技术对计算机硬件算力的要求较高,同时需要大量的语音样本对语音识别模型进行训练。针对这些问题,基于改进后的动态时间归整(Dynamic Time Warping,DTW)算法设计并实现了一个语音识别系统。展开更多
采用基于动态规划方法的动态时间归正技术DTW(D YNAM IC T IM E W ARP ING),可成功解决语音信号特征参数序列比较时时长不等的问题.在基于DTW的特征匹配用改进的动态时间归正方法将模板特征序列和语音特征序列进行匹配的基础上,比较两...采用基于动态规划方法的动态时间归正技术DTW(D YNAM IC T IM E W ARP ING),可成功解决语音信号特征参数序列比较时时长不等的问题.在基于DTW的特征匹配用改进的动态时间归正方法将模板特征序列和语音特征序列进行匹配的基础上,比较两者之间的失真,得出识别判决的依据.实验表明,改进后的算法在孤立词语音识别中获得了良好性能.展开更多
传统动态时间规整算法(Dynamic Time Warping,DTW)及其变种算法被广泛应用于多维时间序列的相似性分析,但它们通常只关注单个时间点的信息而忽略了上下文信息,从而很可能匹配两个形状完全不同的点。因此提出一种结合形状特征及其上下文...传统动态时间规整算法(Dynamic Time Warping,DTW)及其变种算法被广泛应用于多维时间序列的相似性分析,但它们通常只关注单个时间点的信息而忽略了上下文信息,从而很可能匹配两个形状完全不同的点。因此提出一种结合形状特征及其上下文的多维DTW算法(Multi-Dimensional Contextual Dynamic Time Warping,MDCDTW)。该算法首先计算多维时间序列的一阶梯度,然后对其进行采样处理,并以多维梯度矩阵表示当前时间点的形状信息及其上下文信息,最后利用DTW求解多维时间序列间的最短匹配路径。为检测算法设计的合理性,对算法进行了定性分析和定量分析,实验结果表明MDC-DTW算法设计是合理的;为检测MDC-DTW的性能,选用5个多维时间序列数据集,并与4个优异的多维DTW算法进行对比实验,实验结果表明MDC-DTW具有较高的准确率和运行效率。展开更多
基金supported by the National Natural Science Foundation of China(61971037,61960206009,61601031)the Natural Science Foundation of Chongqing,China(cstc2020jcyj-msxm X0608,cstc2020jcyj-jq X0008)。
文摘Ground-based interferometric synthetic aperture radar(GB-InSAR)can take deformation measurement with a high accuracy.Partition of the GB-InSAR deformation map benefits analyzing the deformation state of the monitoring scene better.Existing partition methods rely on labelled datasets or single deformation feature,and they cannot be effectively utilized in GBInSAR applications.This paper proposes an improved partition method of the GB-InSAR deformation map based on dynamic time warping(DTW)and k-means.The DTW similarities between a reference point and all the measurement points are calculated based on their time-series deformations.Then the DTW similarity and cumulative deformation are taken as two partition features.With the k-means algorithm and the score based on multi evaluation indexes,a deformation map can be partitioned into an appropriate number of classes.Experimental datasets of West Copper Mine are processed to validate the effectiveness of the proposed method,whose measurement points are divided into seven classes with a score of 0.3151.
基金supported by the National Natural Science Foundation of China(6153302061309014)the Natural Science Foundation Project of CQ CSTC(cstc2017jcyj AX0408)
文摘The traditional grey incidence degree is mainly based on the distance analysis methods, which is measured by the displacement difference between corresponding points between sequences. When some data of sequences are missing (inconsistency in the length of the sequences), the only way is to delete the longer sequences or to fill the shorter sequences. Therefore, some uncertainty is introduced. To solve this problem, by introducing three-dimensional grey incidence degree (3D-GID), a novel GID based on the multidimensional dynamic time warping distance (MDDTW distance-GID) is proposed. On the basis of it, the corresponding grey incidence clustering (MDDTW distance-GIC) method is constructed. It not only has the simpler computation process, but also can be applied to the incidence comparison between uncertain multidimensional sequences directly. The experiment shows that MDDTW distance-GIC is more accurate when dealing with the uncertain sequences. Compared with the traditional GIC method, the precision of the MDDTW distance-GIC method has increased nearly 30%.
基金National Key R&D Program of China(No.2016YFB1001401)
文摘Aiming at the diversity of hand gesture traces by different people,the article presents novel method called cluster dynamic time warping( CDTW),which is based on the main axis classification and sample clustering of individuals. This method shows good performance on reducing the complexity of recognition and strong robustness of individuals. Data acquisition is implemented on a triaxial accelerometer with 100 Hz sampling frequency. A database of 2400 traces was created by ten subjects for the system testing and evaluation. The overall accuracy was found to be 98. 84% for user independent gesture recognition and 96. 7% for user dependent gesture recognition,higher than dynamic time warping( DTW),derivative DTW( DDTW) and piecewise DTW( PDTW) methods.Computation cost of CDTW in this project has been reduced 11 520 times compared with DTW.
文摘采用基于动态规划方法的动态时间归正技术DTW(D YNAM IC T IM E W ARP ING),可成功解决语音信号特征参数序列比较时时长不等的问题.在基于DTW的特征匹配用改进的动态时间归正方法将模板特征序列和语音特征序列进行匹配的基础上,比较两者之间的失真,得出识别判决的依据.实验表明,改进后的算法在孤立词语音识别中获得了良好性能.
文摘传统动态时间规整算法(Dynamic Time Warping,DTW)及其变种算法被广泛应用于多维时间序列的相似性分析,但它们通常只关注单个时间点的信息而忽略了上下文信息,从而很可能匹配两个形状完全不同的点。因此提出一种结合形状特征及其上下文的多维DTW算法(Multi-Dimensional Contextual Dynamic Time Warping,MDCDTW)。该算法首先计算多维时间序列的一阶梯度,然后对其进行采样处理,并以多维梯度矩阵表示当前时间点的形状信息及其上下文信息,最后利用DTW求解多维时间序列间的最短匹配路径。为检测算法设计的合理性,对算法进行了定性分析和定量分析,实验结果表明MDC-DTW算法设计是合理的;为检测MDC-DTW的性能,选用5个多维时间序列数据集,并与4个优异的多维DTW算法进行对比实验,实验结果表明MDC-DTW具有较高的准确率和运行效率。