The problem of linear time-varying(LTV) system modal analysis is considered based on time-dependent state space representations, as classical modal analysis of linear time-invariant systems and current LTV system mo...The problem of linear time-varying(LTV) system modal analysis is considered based on time-dependent state space representations, as classical modal analysis of linear time-invariant systems and current LTV system modal analysis under the "frozen-time" assumption are not able to determine the dynamic stability of LTV systems. Time-dependent state space representations of LTV systems are first introduced, and the corresponding modal analysis theories are subsequently presented via a stabilitypreserving state transformation. The time-varying modes of LTV systems are extended in terms of uniqueness, and are further interpreted to determine the system's stability. An extended modal identification is proposed to estimate the time-varying modes, consisting of the estimation of the state transition matrix via a subspace-based method and the extraction of the time-varying modes by the QR decomposition. The proposed approach is numerically validated by three numerical cases, and is experimentally validated by a coupled moving-mass simply supported beam exper- imental case. The proposed approach is capable of accurately estimating the time-varying modes, and provides anew way to determine the dynamic stability of LTV systems by using the estimated time-varying modes.展开更多
In this paper,an efficien formulation based on the Lagrangian method is presented to investigate the contact–impact problems of f exible multi-body systems.Generally,the penalty method and the Hertz contact law are t...In this paper,an efficien formulation based on the Lagrangian method is presented to investigate the contact–impact problems of f exible multi-body systems.Generally,the penalty method and the Hertz contact law are the most commonly used methods in engineering applications.However,these methods are highly dependent on various non-physical parameters,which have great effects on the simulation results.Moreover,a tremendous number of degrees of freedom in the contact–impact problems will influenc thenumericalefficien ysignificantl.Withtheconsideration of these two problems,a formulation combining the component mode synthesis method and the Lagrangian method is presented to investigate the contact–impact problems in fl xible multi-body system numerically.Meanwhile,the finit element meshing laws of the contact bodies will be studied preliminarily.A numerical example with experimental verificatio will certify the reliability of the presented formulationincontact–impactanalysis.Furthermore,aseries of numerical investigations explain how great the influenc of the finit element meshing has on the simulation results.Finally the limitations of the element size in different regions are summarized to satisfy both the accuracy and efficien y.展开更多
The aim of this paper is to present the dynamic analyses of the system involving various damping models. The assumed frequency-dependent damping forces depend on the past history of motion via convolution integrals ov...The aim of this paper is to present the dynamic analyses of the system involving various damping models. The assumed frequency-dependent damping forces depend on the past history of motion via convolution integrals over some damping kernel functions. By choosing suitable damping kernel functions of frequency-dependent damp- ing model, it may be derived from the familiar viscoelastic materials. A brief review of literature on the choice of available damping models is presented. Both the mode superposition method and Fourier transform method are developed for calculating the dynamic response of the structural systems with various damping models. It is shown that in the case of non-deficient systems with various damping models, the modal analysis with repeated eigenvalues are very similar to the traditional modal analysis used in undamped or viscously damped systems. Also, based on the pseudo-force approach, we transform the original equations of motion with nonzero initial conditions into an equivalent one with zero initial conditions and therefore present a Fourier transform method for the dynamics of structural systems with various damping models. Finally, some case studies are used to show the application and effectiveness of the derived formulas.展开更多
基金Supported by the China Scholarship Council,National Natural Science Foundation of China(Grant No.11402022)the Interuniversity Attraction Poles Programme of the Belgian Science Policy Office(DYSCO)+1 种基金the Fund for Scientific Research–Flanders(FWO)the Research Fund KU Leuven
文摘The problem of linear time-varying(LTV) system modal analysis is considered based on time-dependent state space representations, as classical modal analysis of linear time-invariant systems and current LTV system modal analysis under the "frozen-time" assumption are not able to determine the dynamic stability of LTV systems. Time-dependent state space representations of LTV systems are first introduced, and the corresponding modal analysis theories are subsequently presented via a stabilitypreserving state transformation. The time-varying modes of LTV systems are extended in terms of uniqueness, and are further interpreted to determine the system's stability. An extended modal identification is proposed to estimate the time-varying modes, consisting of the estimation of the state transition matrix via a subspace-based method and the extraction of the time-varying modes by the QR decomposition. The proposed approach is numerically validated by three numerical cases, and is experimentally validated by a coupled moving-mass simply supported beam exper- imental case. The proposed approach is capable of accurately estimating the time-varying modes, and provides anew way to determine the dynamic stability of LTV systems by using the estimated time-varying modes.
基金supported by the National Science Foundation of China (Grants 11132007,11272203)
文摘In this paper,an efficien formulation based on the Lagrangian method is presented to investigate the contact–impact problems of f exible multi-body systems.Generally,the penalty method and the Hertz contact law are the most commonly used methods in engineering applications.However,these methods are highly dependent on various non-physical parameters,which have great effects on the simulation results.Moreover,a tremendous number of degrees of freedom in the contact–impact problems will influenc thenumericalefficien ysignificantl.Withtheconsideration of these two problems,a formulation combining the component mode synthesis method and the Lagrangian method is presented to investigate the contact–impact problems in fl xible multi-body system numerically.Meanwhile,the finit element meshing laws of the contact bodies will be studied preliminarily.A numerical example with experimental verificatio will certify the reliability of the presented formulationincontact–impactanalysis.Furthermore,aseries of numerical investigations explain how great the influenc of the finit element meshing has on the simulation results.Finally the limitations of the element size in different regions are summarized to satisfy both the accuracy and efficien y.
基金This research was supported by the National Natural Science Foundation of China (Grant No. 51375184).
文摘The aim of this paper is to present the dynamic analyses of the system involving various damping models. The assumed frequency-dependent damping forces depend on the past history of motion via convolution integrals over some damping kernel functions. By choosing suitable damping kernel functions of frequency-dependent damp- ing model, it may be derived from the familiar viscoelastic materials. A brief review of literature on the choice of available damping models is presented. Both the mode superposition method and Fourier transform method are developed for calculating the dynamic response of the structural systems with various damping models. It is shown that in the case of non-deficient systems with various damping models, the modal analysis with repeated eigenvalues are very similar to the traditional modal analysis used in undamped or viscously damped systems. Also, based on the pseudo-force approach, we transform the original equations of motion with nonzero initial conditions into an equivalent one with zero initial conditions and therefore present a Fourier transform method for the dynamics of structural systems with various damping models. Finally, some case studies are used to show the application and effectiveness of the derived formulas.