Because of the randomness of many impact factors influencing the dynamic assembly relationship of complex machinery, the reliability analysis of dynamic assembly relationship needs to be accomplished considering the r...Because of the randomness of many impact factors influencing the dynamic assembly relationship of complex machinery, the reliability analysis of dynamic assembly relationship needs to be accomplished considering the randomness from a probabilistic perspective. To improve the accuracy and efficiency of dynamic assembly relationship reliability analysis, the mechanical dynamic assembly reliability(MDAR) theory and a distributed collaborative response surface method(DCRSM) are proposed. The mathematic model of DCRSM is established based on the quadratic response surface function, and verified by the assembly relationship reliability analysis of aeroengine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). Through the comparison of the DCRSM, traditional response surface method(RSM) and Monte Carlo Method(MCM), the results show that the DCRSM is not able to accomplish the computational task which is impossible for the other methods when the number of simulation is more than 100 000 times, but also the computational precision for the DCRSM is basically consistent with the MCM and improved by 0.40-4.63% to the RSM, furthermore, the computational efficiency of DCRSM is up to about 188 times of the MCM and 55 times of the RSM under 10000 times simulations. The DCRSM is demonstrated to be a feasible and effective approach for markedly improving the computational efficiency and accuracy of MDAR analysis. Thus, the proposed research provides the promising theory and method for the MDAR design and optimization, and opens a novel research direction of probabilistic analysis for developing the high-performance and high-reliability of aeroengine.展开更多
To make the dynamic assembly reliability analysis more effective for complex machinery of multi-object multi-discipline(MOMD),distributed collaborative extremum response surface method(DCERSM)was proposed based on ext...To make the dynamic assembly reliability analysis more effective for complex machinery of multi-object multi-discipline(MOMD),distributed collaborative extremum response surface method(DCERSM)was proposed based on extremum response surface method(ERSM).Firstly,the basic theories of the ERSM and DCERSM were investigated,and the strengths of DCERSM were proved theoretically.Secondly,the mathematical model of the DCERSM was established based upon extremum response surface function(ERSF).Finally,this model was applied to the reliability analysis of blade-tip radial running clearance(BTRRC)of an aeroengine high pressure turbine(HPT)to verify its advantages.The results show that the DCERSM can not only reshape the possibility of the reliability analysis for the complex turbo machinery,but also greatly improve the computational speed,save the computational time and improve the computational efficiency while keeping the accuracy.Thus,the DCERSM is verified to be feasible and effective in the dynamic assembly reliability(DAR)analysis of complex machinery.Moreover,this method offers an useful insight for designing and optimizing the dynamic reliability of complex machinery.展开更多
Mechanical assembly has its own dynamic quality directly affecting the dynamic quality of whole product and should be considered in quality inspection and estimation of mechanical assembly. Based on functional relatio...Mechanical assembly has its own dynamic quality directly affecting the dynamic quality of whole product and should be considered in quality inspection and estimation of mechanical assembly. Based on functional relations between dynamic characteristics involved in mechanical assembly, the effects of assembling process on dynamic characteristics of substructural components of an assembly system are investigated by substructuring analysis. Assembly-coupling dynamic stiffness is clarified as the dominant factor of the effects and can be used as a quantitative measure of assembly dynamic quality. Two computational schemes using frequency response functions(FRFs) to determine the stiffness are provided and discussed by inverse substructuring analysis, including their applicable conditions and implementation procedure in application. Eigenvalue analysis on matrix-ratios of FRFs before and after assembling is employed and well validates the analytical outcomes and the schemes via both a lumped-parameter model and its analogic experimental counterpart. Applying the two schemes to inspect the dynamic quality provides the message of dynamic performance of the assembly system, and therefore improves conventional quality inspection and estimation of mechanical assembly in completeness.展开更多
Proteins play a vital role in different biological processes by forming complexes through precise folding with exclusive inter-and intra-molecular interactions.Understanding the structural and regulatory mechanisms un...Proteins play a vital role in different biological processes by forming complexes through precise folding with exclusive inter-and intra-molecular interactions.Understanding the structural and regulatory mechanisms underlying protein complex formation provides insights into biophysical processes.Furthermore,the principle of protein assembly gives guidelines for new biomimetic materials with potential appli-cations in medicine,energy,and nanotechnology.Atomic force microscopy(AFM)is a powerful tool for investigating protein assembly and interactions across spatial scales(single molecules to cells)and temporal scales(milliseconds to days).It has significantly contributed to understanding nanoscale architectures,inter-and intra-molecular interactions,and regulatory elements that determine protein structures,assemblies,and functions.This review describes recent advancements in elucidating protein assemblies with in situ AFM.We discuss the structures,diffusions,interac-tions,and assembly dynamics of proteins captured by conventional and high-speed AFM in near-native environments and recent AFM developments in the multimodal high-resolution imaging,bimodal imaging,live cell imaging,and machine-learning-enhanced data analysis.These approaches show the significance of broadening the horizons of AFM and enable unprecedented explorations of protein assembly for biomaterial design and biomedical research.展开更多
Zinc porphyrin dimer (1) has been designed and synthesized as a novel host of N-containing ligands. The assembly behavior and photophysical changes of its host-guest complexes were evaluated by IH NMR, fluorescence,...Zinc porphyrin dimer (1) has been designed and synthesized as a novel host of N-containing ligands. The assembly behavior and photophysical changes of its host-guest complexes were evaluated by IH NMR, fluorescence, and UV-visible titrations, and the processes reveal that the host-guest assembly first creates a stable sandwich complex, then an axial coordination equilibrium appears between the sandwich complex and free ligand. The changes of absorption spectra of the assembly processes rely on the stabilities of the complexes, and fluorescence quenching depends on the axial coordination equilibrium, which indicates that the axial ligation/de-ligation dynamics is indeed a pathway from the excited state to the ground state for metalloporphyrin complexes.展开更多
Background:Axonal degeneration and defects in neuromuscular neurotransmission represent a pathological hall-mark in spinal muscular atrophy(SMA)and other forms of motoneuron disease.These pathological changes do not o...Background:Axonal degeneration and defects in neuromuscular neurotransmission represent a pathological hall-mark in spinal muscular atrophy(SMA)and other forms of motoneuron disease.These pathological changes do not only base on altered axonal and presynaptic architecture,but also on alterations in dynamic movements of organelles and subcellular structures that are not necessarily reflected by static histopathological changes.The dynamic inter-play between the axonal endoplasmic reticulum(ER)and ribosomes is essential for stimulus-induced local translation in motor axons and presynaptic terminals.However,it remains enigmatic whether the ER and ribosome crosstalk is impaired in the presynaptic compartment of motoneurons with Smn(survival of motor neuron)deficiency that could contribute to axonopathy and presynaptic dysfunction in SMA.Methods:Using super-resolution microscopy,proximity ligation assay(PLA)and live imaging of cultured motoneu-rons from a mouse model of SMA,we investigated the dynamics of the axonal ER and ribosome distribution and activation.Results:We observed that the dynamic remodeling of ER was impaired in axon terminals of Smn-deficient motoneu-rons.In addition,in axon terminals of Smn-deficient motoneurons,ribosomes failed to respond to the brain-derived neurotrophic factor stimulation,and did not undergo rapid association with the axonal ER in response to extracellular stimuli.Conclusions:These findings implicate impaired dynamic interplay between the ribosomes and ER in axon terminals of motoneurons as a contributor to the pathophysiology of SMA and possibly also other motoneuron diseases.展开更多
Controlled assembly of nanoparticles(NPs)has garnered much interest over the past two decades.Beyond established techniques,new methods utilizing local short-range or large-scale long-range interactions remain to be e...Controlled assembly of nanoparticles(NPs)has garnered much interest over the past two decades.Beyond established techniques,new methods utilizing local short-range or large-scale long-range interactions remain to be explored to achieve diverse micro-and nanoscale structures.Here,we report the controlled emergence of vortex-pair arrays within monodispersed gold nanorods by applying a direct current electric field across a pair of sawtooth electrodes.By employing in situ darkfield microscopy and particle collective analysis,we elucidate the mechanism behind the formation and stabilization of the NP vortices,attributing it to the combined effects of the electrode shape,high NP density,and high solution viscosity.We further explore the controllability of the vortex-pair arrays and obtain multiple complex vortice patterns.Our findings will facilitate the investigation of efficient and controlled dynamic assembly of NPs under external fields and help manufacture next-generation optoelectronic functional materials.展开更多
Selectively controlling the bioactivity of antimicrobial peptides is not only a fascinating scientific challenge but also a necessity in localized antibacterial therapy.Here,a smart antimicrobial system has been fabri...Selectively controlling the bioactivity of antimicrobial peptides is not only a fascinating scientific challenge but also a necessity in localized antibacterial therapy.Here,a smart antimicrobial system has been fabricated via host–guest driven dynamic selfassembly between a branched cyclodextrin and cationic linear peptides appended with azobenzene side chains.The self-assembly structure of the host–guest system could be controlled reversibly through the photoresponsive isomerization of azobenzene moieties.展开更多
Monodispersed molecular nanotubes,particularly those with uniform lengths,are challenging targets for chemical synthesis.Here,we report the general design and efficient synthesis of finite molecular nanotubes,utilizin...Monodispersed molecular nanotubes,particularly those with uniform lengths,are challenging targets for chemical synthesis.Here,we report the general design and efficient synthesis of finite molecular nanotubes,utilizing a dynamic assembly strategy to precisely stack axially functionalized macrocycles by chemical connections.Discrete tubular molecules,ranging from 7.8 to 19.8 kDa with covalent or coordinative connections,have been prepared from modular macrocyclic building blocks through highly convergent routes.The discrete molecular nature and structural anisotropy of these synthetic tubes warrant postsynthesis modifications and solution processing methods,as demonstrated by the controllable orientations when deposited onto different prefabricated surfaces.展开更多
Due to the high local concentration of substrates in confined space, porous solid Bronsted acids have been extensively explored for efficient acid-catalyzed reaction. However, the porous structures with strong Bronste...Due to the high local concentration of substrates in confined space, porous solid Bronsted acids have been extensively explored for efficient acid-catalyzed reaction. However, the porous structures with strong Bronsted acids lack long-term stability due to chemical hydrolysis. Moreover, the products inhibition effect in confined rigid cavities severely obstructs subsequent catalysis. Here, tubular Bronsted acid catalyst with unique recognition of protons was presented by self-assembly of p H-responsive aromatic amphiphiles. The responsive assembly could mechanically transfer hydrogen ions from low-concentration acidic solution into tubular defined pores, thereby producing effective catalytic activity for Mannich reactions in mildly acidic solution. Notably, the tubular catalyst unfolded into flat sheets upon addition of triethylamine for efficient release of products, which could be recovered by subsequent acidification and the catalytic activity still remained. Therefore, the porous Bronsted acid with reversible assembly provides a new strategy for mass synthesis through increasing conversion times.展开更多
Control over geometric curvature and chirality of assemblies in pure aqueous media is key to the design of responsive materials and molecular machines.Here we show how aggregate geometric curvature and chirality of mo...Control over geometric curvature and chirality of assemblies in pure aqueous media is key to the design of responsive materials and molecular machines.Here we show how aggregate geometric curvature and chirality of motor amphiphiles could be switched from bicontinuous calabashes to nanoribbons or from vesicles to nanoribbons by modulating rotor orientation direction with dual light/heat stimuli to influence spontaneous curvature in assemblies.The photoisomerization and thermal helix inversion processes of molecular motors have been studied at the molecular level,and the transformation of supramolecular assemblies has been investigated at the microscopic level.The morphological evolution of the calabash-shaped assembly can be kinetically captured,suggesting that the bicontinuous calabash-shaped structures are different from the bowl-shaped aggregates based on solvent-driven assembly upon the addition of non-solvent or solvent.The investigation of dual optical/thermal control of rotor orientation can provide a new strategy for tuning the geometric curvature and chirality of nanoassemblies at the nanoscale,arriving ultimately the clusteroluminescence through-space electronic communication at responsive supramolecular nanosystems.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.51175017,51245027)Innovation Foundation of Beihang University for PhD Graduates,China(Grant No.YWF-12-RBYJ008)Research Fund for the Doctoral Program of Higher Education of China(Grant No.20111102110011)
文摘Because of the randomness of many impact factors influencing the dynamic assembly relationship of complex machinery, the reliability analysis of dynamic assembly relationship needs to be accomplished considering the randomness from a probabilistic perspective. To improve the accuracy and efficiency of dynamic assembly relationship reliability analysis, the mechanical dynamic assembly reliability(MDAR) theory and a distributed collaborative response surface method(DCRSM) are proposed. The mathematic model of DCRSM is established based on the quadratic response surface function, and verified by the assembly relationship reliability analysis of aeroengine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). Through the comparison of the DCRSM, traditional response surface method(RSM) and Monte Carlo Method(MCM), the results show that the DCRSM is not able to accomplish the computational task which is impossible for the other methods when the number of simulation is more than 100 000 times, but also the computational precision for the DCRSM is basically consistent with the MCM and improved by 0.40-4.63% to the RSM, furthermore, the computational efficiency of DCRSM is up to about 188 times of the MCM and 55 times of the RSM under 10000 times simulations. The DCRSM is demonstrated to be a feasible and effective approach for markedly improving the computational efficiency and accuracy of MDAR analysis. Thus, the proposed research provides the promising theory and method for the MDAR design and optimization, and opens a novel research direction of probabilistic analysis for developing the high-performance and high-reliability of aeroengine.
基金Project(51175017)supported by the National Natural Science Foundation of ChinaProject(YWF-12-RBYJ-008)supported by the Innovation Foundation of Beihang University for PhD Graduates,ChinaProject(20111102110011)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘To make the dynamic assembly reliability analysis more effective for complex machinery of multi-object multi-discipline(MOMD),distributed collaborative extremum response surface method(DCERSM)was proposed based on extremum response surface method(ERSM).Firstly,the basic theories of the ERSM and DCERSM were investigated,and the strengths of DCERSM were proved theoretically.Secondly,the mathematical model of the DCERSM was established based upon extremum response surface function(ERSF).Finally,this model was applied to the reliability analysis of blade-tip radial running clearance(BTRRC)of an aeroengine high pressure turbine(HPT)to verify its advantages.The results show that the DCERSM can not only reshape the possibility of the reliability analysis for the complex turbo machinery,but also greatly improve the computational speed,save the computational time and improve the computational efficiency while keeping the accuracy.Thus,the DCERSM is verified to be feasible and effective in the dynamic assembly reliability(DAR)analysis of complex machinery.Moreover,this method offers an useful insight for designing and optimizing the dynamic reliability of complex machinery.
基金Supported by National Natural Science Foundation of China(Grant No.51475211)
文摘Mechanical assembly has its own dynamic quality directly affecting the dynamic quality of whole product and should be considered in quality inspection and estimation of mechanical assembly. Based on functional relations between dynamic characteristics involved in mechanical assembly, the effects of assembling process on dynamic characteristics of substructural components of an assembly system are investigated by substructuring analysis. Assembly-coupling dynamic stiffness is clarified as the dominant factor of the effects and can be used as a quantitative measure of assembly dynamic quality. Two computational schemes using frequency response functions(FRFs) to determine the stiffness are provided and discussed by inverse substructuring analysis, including their applicable conditions and implementation procedure in application. Eigenvalue analysis on matrix-ratios of FRFs before and after assembling is employed and well validates the analytical outcomes and the schemes via both a lumped-parameter model and its analogic experimental counterpart. Applying the two schemes to inspect the dynamic quality provides the message of dynamic performance of the assembly system, and therefore improves conventional quality inspection and estimation of mechanical assembly in completeness.
基金National Natural Science Foundation of China,Grant/Award Numbers:32371525,T2221001,92353304,T2350011Strategic Priority Research Program of the Chinese Academy of Sciences,Grant/Award Number:XDB37020105+5 种基金U.S.Department of EnergyOffice of ScienceOffice of Basic Energy Sciences,Grant/Award Number:FWP 65357Pacific Northwest National LaboratoryEnergy Frontier Research CentersCenter for the Science of Synthesis Across Scales,Grant/Award Number:DE-SC0019288。
文摘Proteins play a vital role in different biological processes by forming complexes through precise folding with exclusive inter-and intra-molecular interactions.Understanding the structural and regulatory mechanisms underlying protein complex formation provides insights into biophysical processes.Furthermore,the principle of protein assembly gives guidelines for new biomimetic materials with potential appli-cations in medicine,energy,and nanotechnology.Atomic force microscopy(AFM)is a powerful tool for investigating protein assembly and interactions across spatial scales(single molecules to cells)and temporal scales(milliseconds to days).It has significantly contributed to understanding nanoscale architectures,inter-and intra-molecular interactions,and regulatory elements that determine protein structures,assemblies,and functions.This review describes recent advancements in elucidating protein assemblies with in situ AFM.We discuss the structures,diffusions,interac-tions,and assembly dynamics of proteins captured by conventional and high-speed AFM in near-native environments and recent AFM developments in the multimodal high-resolution imaging,bimodal imaging,live cell imaging,and machine-learning-enhanced data analysis.These approaches show the significance of broadening the horizons of AFM and enable unprecedented explorations of protein assembly for biomaterial design and biomedical research.
基金Project supported by the 973 Program (No. 2b06CB932900) and the National Nature Science Foundation of China (Nos. 20572048, 20421202).
文摘Zinc porphyrin dimer (1) has been designed and synthesized as a novel host of N-containing ligands. The assembly behavior and photophysical changes of its host-guest complexes were evaluated by IH NMR, fluorescence, and UV-visible titrations, and the processes reveal that the host-guest assembly first creates a stable sandwich complex, then an axial coordination equilibrium appears between the sandwich complex and free ligand. The changes of absorption spectra of the assembly processes rely on the stabilities of the complexes, and fluorescence quenching depends on the axial coordination equilibrium, which indicates that the axial ligation/de-ligation dynamics is indeed a pathway from the excited state to the ground state for metalloporphyrin complexes.
基金Open Access funding enabled and organized by Projekt DEAL.Chunchu Deng was funded by PicoQuant and the Deutsche Forschungsgemeinschaft(DFG)Grant Se697/7-1,Project Number 405988308,DFG Grant JA1823/3-1 for SJ and Cure SMA for SJ,Grant JAB1920.PicoQuant did not influence project design,conduction of experiments or data analyses.
文摘Background:Axonal degeneration and defects in neuromuscular neurotransmission represent a pathological hall-mark in spinal muscular atrophy(SMA)and other forms of motoneuron disease.These pathological changes do not only base on altered axonal and presynaptic architecture,but also on alterations in dynamic movements of organelles and subcellular structures that are not necessarily reflected by static histopathological changes.The dynamic inter-play between the axonal endoplasmic reticulum(ER)and ribosomes is essential for stimulus-induced local translation in motor axons and presynaptic terminals.However,it remains enigmatic whether the ER and ribosome crosstalk is impaired in the presynaptic compartment of motoneurons with Smn(survival of motor neuron)deficiency that could contribute to axonopathy and presynaptic dysfunction in SMA.Methods:Using super-resolution microscopy,proximity ligation assay(PLA)and live imaging of cultured motoneu-rons from a mouse model of SMA,we investigated the dynamics of the axonal ER and ribosome distribution and activation.Results:We observed that the dynamic remodeling of ER was impaired in axon terminals of Smn-deficient motoneu-rons.In addition,in axon terminals of Smn-deficient motoneurons,ribosomes failed to respond to the brain-derived neurotrophic factor stimulation,and did not undergo rapid association with the axonal ER in response to extracellular stimuli.Conclusions:These findings implicate impaired dynamic interplay between the ribosomes and ER in axon terminals of motoneurons as a contributor to the pathophysiology of SMA and possibly also other motoneuron diseases.
基金National Natural Science Foundation of China,Grant/Award Numbers:21425519,21621003,91853105,22127807。
文摘Controlled assembly of nanoparticles(NPs)has garnered much interest over the past two decades.Beyond established techniques,new methods utilizing local short-range or large-scale long-range interactions remain to be explored to achieve diverse micro-and nanoscale structures.Here,we report the controlled emergence of vortex-pair arrays within monodispersed gold nanorods by applying a direct current electric field across a pair of sawtooth electrodes.By employing in situ darkfield microscopy and particle collective analysis,we elucidate the mechanism behind the formation and stabilization of the NP vortices,attributing it to the combined effects of the electrode shape,high NP density,and high solution viscosity.We further explore the controllability of the vortex-pair arrays and obtain multiple complex vortice patterns.Our findings will facilitate the investigation of efficient and controlled dynamic assembly of NPs under external fields and help manufacture next-generation optoelectronic functional materials.
基金supported by the National Natural Science Foundation of China(NSFC21822201 and 21573091).
文摘Selectively controlling the bioactivity of antimicrobial peptides is not only a fascinating scientific challenge but also a necessity in localized antibacterial therapy.Here,a smart antimicrobial system has been fabricated via host–guest driven dynamic selfassembly between a branched cyclodextrin and cationic linear peptides appended with azobenzene side chains.The self-assembly structure of the host–guest system could be controlled reversibly through the photoresponsive isomerization of azobenzene moieties.
基金Financial support was provided by the National Natural Science Foundation of China(nos.21922113,22088102,21672227,21988102,and 22071257)the Chinese Academy of Sciences(no.XDB17000000)the National Key Research and Development Program of China(no.2017YFA0206903),K.C.Wong Education Foundation,and TIPC Director’s Fund.
文摘Monodispersed molecular nanotubes,particularly those with uniform lengths,are challenging targets for chemical synthesis.Here,we report the general design and efficient synthesis of finite molecular nanotubes,utilizing a dynamic assembly strategy to precisely stack axially functionalized macrocycles by chemical connections.Discrete tubular molecules,ranging from 7.8 to 19.8 kDa with covalent or coordinative connections,have been prepared from modular macrocyclic building blocks through highly convergent routes.The discrete molecular nature and structural anisotropy of these synthetic tubes warrant postsynthesis modifications and solution processing methods,as demonstrated by the controllable orientations when deposited onto different prefabricated surfaces.
基金supported by the Natural Science Foundation of China (No. 21871299)Guangdong Natural Science Funds for Distinguished Young Scholar (No. 2019B151502051)+4 种基金the Fundamental Research Funds for the Central Universities (No.19lgzd21)Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515110991)China Postdocroral Science Foundation (No. 2021M701569)the Open Project of State Key Laboratory of Supramolecular Structure and Materials (Jilin University)the Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University)
文摘Due to the high local concentration of substrates in confined space, porous solid Bronsted acids have been extensively explored for efficient acid-catalyzed reaction. However, the porous structures with strong Bronsted acids lack long-term stability due to chemical hydrolysis. Moreover, the products inhibition effect in confined rigid cavities severely obstructs subsequent catalysis. Here, tubular Bronsted acid catalyst with unique recognition of protons was presented by self-assembly of p H-responsive aromatic amphiphiles. The responsive assembly could mechanically transfer hydrogen ions from low-concentration acidic solution into tubular defined pores, thereby producing effective catalytic activity for Mannich reactions in mildly acidic solution. Notably, the tubular catalyst unfolded into flat sheets upon addition of triethylamine for efficient release of products, which could be recovered by subsequent acidification and the catalytic activity still remained. Therefore, the porous Bronsted acid with reversible assembly provides a new strategy for mass synthesis through increasing conversion times.
基金supported by the National Key R&D Program of China(2018YFA0902600)the National Natural Science Foundation of China(22174019)+1 种基金the Natural Science Foundation of Fujian(2020J06036)Fuzhou Science and Technology Innovation and Entrepreneurial Talent Cultivation Program Project(2022-R-002)。
基金Science and Technology Program of Guangzhou,Grant/Award Number:201804010017National Natural Science Foundation of China,Grant/Award Number:21374137+1 种基金Natural Science Foundation of Guangdong Province,Grant/Award Number:2014A030313194Science and Technology Program of Guangdong Province,Grant/Award Number:2017A050506021。
文摘Control over geometric curvature and chirality of assemblies in pure aqueous media is key to the design of responsive materials and molecular machines.Here we show how aggregate geometric curvature and chirality of motor amphiphiles could be switched from bicontinuous calabashes to nanoribbons or from vesicles to nanoribbons by modulating rotor orientation direction with dual light/heat stimuli to influence spontaneous curvature in assemblies.The photoisomerization and thermal helix inversion processes of molecular motors have been studied at the molecular level,and the transformation of supramolecular assemblies has been investigated at the microscopic level.The morphological evolution of the calabash-shaped assembly can be kinetically captured,suggesting that the bicontinuous calabash-shaped structures are different from the bowl-shaped aggregates based on solvent-driven assembly upon the addition of non-solvent or solvent.The investigation of dual optical/thermal control of rotor orientation can provide a new strategy for tuning the geometric curvature and chirality of nanoassemblies at the nanoscale,arriving ultimately the clusteroluminescence through-space electronic communication at responsive supramolecular nanosystems.