A heavy-haul train-track coupled model is developed. Taking the emergency braking of the 2×104 t combined train as example, the train longitudinal impulse, the coupler dynamic behaviors and wheel-rail interaction...A heavy-haul train-track coupled model is developed. Taking the emergency braking of the 2×104 t combined train as example, the train longitudinal impulse, the coupler dynamic behaviors and wheel-rail interactions of vehicles distributing in the different positions are analyzed. The results indicate that under the coupler compressing forces, the couplers of middle locomotives may tilt to the free swing limits, which induces the unidirectional tilt of their connected wagon couplers. Consequently, the coupler longitudinal forces produce the lateral components, and then affect the wheel-rail dynamic interaction. The performance of the middle locomotive and their neighboring freight wagons deteriorate significantly, becoming the most dangerous parts in the combined train. The wagons disconnecting with the locomotives can basically keep their couplers to stabilize in the centering positions, even though the maximum coupler longitudinal force acts on it. And its corresponding running safety also has little changes.展开更多
Series compensation has proven to increase stability in transmission of electric power. On the other hand insertion of series capacitor results in severe subsynchronous torques. The subsynchronous torque leads to gene...Series compensation has proven to increase stability in transmission of electric power. On the other hand insertion of series capacitor results in severe subsynchronous torques. The subsynchronous torque leads to generator-turbine shaft damage. Mitigation of subsynchronous transient torques is achieved through resistor bank connected to generator terminals. The insertion of resistor bank is controlled by fuzzy logic controller. The proposed controller has been tested on IEEE First Benchmark Model and it proved to have good damping for the torsional torques.展开更多
Currently,direct braking-force measurement under dynamic conditions requires a considerable modification to the vehicles and has poor compatibility because there are many types of vehicles.Thus,in this paper,an indire...Currently,direct braking-force measurement under dynamic conditions requires a considerable modification to the vehicles and has poor compatibility because there are many types of vehicles.Thus,in this paper,an indirect measurement method of new-energy vehicles,braking force under dynamic braking conditions is proposed.The mechanical wheel and axle model at low/idling/high speeds is established using the piston-pressure formula,force transfer in the brake-wheel cylinder,relative movement between the wheel and the roller,among others.On this basis,the relationship between wheel braking force and roller-linear acceleration is further derived.Our method does not alter existing vehicle structures or sensor types.The standard sealing bolt is temporarily replaced with a hydraulic sensor for coefficient calibration.Afterward,the braking force can be indirectly calculated using the roller-linear velocity data.The method has characteristics of efficiency and high accuracy without refitting vehicles.展开更多
Transient stability of doubly-fed induction generators(DFIGs)is a major concern in both AC and DC grids,and DFIGs must stay connected for a time during grid faults according to the power grid requirements.For this pur...Transient stability of doubly-fed induction generators(DFIGs)is a major concern in both AC and DC grids,and DFIGs must stay connected for a time during grid faults according to the power grid requirements.For this purpose,this work proposes an overcurrent and overvoltage protective device(OCV-PD)to ensure that DCbased DFIG system can stay connected and operate well during the faults.Compared with a series dynamic braking resistor(SDBR),two aspects are improved.First,a twolevel control strategy and DC inductor circuit are used to ensure that the OCV-PD can limit the current impulse to protect DFIG system during an overcurrent fault.Second,the OCV-PD can protect system from overvoltage fault which a SDBR cannot do.Simulation results verify itsvalidity and feasibility,finding that for overcurrent protection the OCV-PD outperforms a SDBR with an average decreased index of 3.29%,and for overvoltage protection it achieves an average index of 1.02%.展开更多
Among all renewable energies,wind power is rapidly growing,whereby it has the most participation to supply power.Doubly fed induction generator(DFIG)is the most popular wind turbine,as it can play a very significant r...Among all renewable energies,wind power is rapidly growing,whereby it has the most participation to supply power.Doubly fed induction generator(DFIG)is the most popular wind turbine,as it can play a very significant role to enhance low voltage ride through(LVRT)capability.Ancillary services such as voltage control and reactive power capability are the main topics in wind power control systems that should be handled profoundly and carefully.The lack of reactive power during fault period can result in instability in generators and/or disconnection of the wind turbine from the power system.The main aims of this study are to illustrate the most effective approaches subject to improve the efficiency,stability,and reliability of wind power plant associated with LVRT capability enhancement.This effectiveness and efficiency are demonstrated by,firstly,comparison between all types of wind turbines,focusing on the ancillary services,after the existing advanced control strategies.According to the literature,there is a consensus that modifying converter-based control topology is the most effective approach to enhance LVRT capability in DFIG-based wind turbine(WT).Therefore,an advanced integrated control strategy is designed by considering the effect of the rotor side converter(RSC)and the grid side converter(GSC).A model of the wind power plant is presented based on the control objectives.MATLAB/Simulink is also used to illustrate the effectiveness of the designed algorithm.展开更多
基金Projects(51605315,51478399)supported by the National Natural Science Foundation of ChinaProject(2013BAG20B00)supported by the National Key Technology R&D Program of ChinaProject(TPL1707)supported by the Open Project Program of the State Key Laboratory of Traction Power,China
文摘A heavy-haul train-track coupled model is developed. Taking the emergency braking of the 2×104 t combined train as example, the train longitudinal impulse, the coupler dynamic behaviors and wheel-rail interactions of vehicles distributing in the different positions are analyzed. The results indicate that under the coupler compressing forces, the couplers of middle locomotives may tilt to the free swing limits, which induces the unidirectional tilt of their connected wagon couplers. Consequently, the coupler longitudinal forces produce the lateral components, and then affect the wheel-rail dynamic interaction. The performance of the middle locomotive and their neighboring freight wagons deteriorate significantly, becoming the most dangerous parts in the combined train. The wagons disconnecting with the locomotives can basically keep their couplers to stabilize in the centering positions, even though the maximum coupler longitudinal force acts on it. And its corresponding running safety also has little changes.
文摘Series compensation has proven to increase stability in transmission of electric power. On the other hand insertion of series capacitor results in severe subsynchronous torques. The subsynchronous torque leads to generator-turbine shaft damage. Mitigation of subsynchronous transient torques is achieved through resistor bank connected to generator terminals. The insertion of resistor bank is controlled by fuzzy logic controller. The proposed controller has been tested on IEEE First Benchmark Model and it proved to have good damping for the torsional torques.
文摘Currently,direct braking-force measurement under dynamic conditions requires a considerable modification to the vehicles and has poor compatibility because there are many types of vehicles.Thus,in this paper,an indirect measurement method of new-energy vehicles,braking force under dynamic braking conditions is proposed.The mechanical wheel and axle model at low/idling/high speeds is established using the piston-pressure formula,force transfer in the brake-wheel cylinder,relative movement between the wheel and the roller,among others.On this basis,the relationship between wheel braking force and roller-linear acceleration is further derived.Our method does not alter existing vehicle structures or sensor types.The standard sealing bolt is temporarily replaced with a hydraulic sensor for coefficient calibration.Afterward,the braking force can be indirectly calculated using the roller-linear velocity data.The method has characteristics of efficiency and high accuracy without refitting vehicles.
基金supported by Natural Science Foundation of China(No.61473170)Key R&D Plan Project of Shandong Province,PRC(No.2016GSF115018)
文摘Transient stability of doubly-fed induction generators(DFIGs)is a major concern in both AC and DC grids,and DFIGs must stay connected for a time during grid faults according to the power grid requirements.For this purpose,this work proposes an overcurrent and overvoltage protective device(OCV-PD)to ensure that DCbased DFIG system can stay connected and operate well during the faults.Compared with a series dynamic braking resistor(SDBR),two aspects are improved.First,a twolevel control strategy and DC inductor circuit are used to ensure that the OCV-PD can limit the current impulse to protect DFIG system during an overcurrent fault.Second,the OCV-PD can protect system from overvoltage fault which a SDBR cannot do.Simulation results verify itsvalidity and feasibility,finding that for overcurrent protection the OCV-PD outperforms a SDBR with an average decreased index of 3.29%,and for overvoltage protection it achieves an average index of 1.02%.
文摘Among all renewable energies,wind power is rapidly growing,whereby it has the most participation to supply power.Doubly fed induction generator(DFIG)is the most popular wind turbine,as it can play a very significant role to enhance low voltage ride through(LVRT)capability.Ancillary services such as voltage control and reactive power capability are the main topics in wind power control systems that should be handled profoundly and carefully.The lack of reactive power during fault period can result in instability in generators and/or disconnection of the wind turbine from the power system.The main aims of this study are to illustrate the most effective approaches subject to improve the efficiency,stability,and reliability of wind power plant associated with LVRT capability enhancement.This effectiveness and efficiency are demonstrated by,firstly,comparison between all types of wind turbines,focusing on the ancillary services,after the existing advanced control strategies.According to the literature,there is a consensus that modifying converter-based control topology is the most effective approach to enhance LVRT capability in DFIG-based wind turbine(WT).Therefore,an advanced integrated control strategy is designed by considering the effect of the rotor side converter(RSC)and the grid side converter(GSC).A model of the wind power plant is presented based on the control objectives.MATLAB/Simulink is also used to illustrate the effectiveness of the designed algorithm.