期刊文献+
共找到1,140篇文章
< 1 2 57 >
每页显示 20 50 100
Experimental study of the dynamic mechanical responses and failure characteristics of coal under true triaxial confinements 被引量:1
1
作者 Zhanguo Ma Pengfei Yan +3 位作者 Shixing Cheng Peng Gong Fuzhou Qi Jianguo Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第6期761-772,共12页
Investigations on the dynamic mechanical properties and failure mechanisms of coal under in-situ stress is essential for the prevention of dynamic disasters in deep coal mines.Thus,a modified true triaxial Hopkinson b... Investigations on the dynamic mechanical properties and failure mechanisms of coal under in-situ stress is essential for the prevention of dynamic disasters in deep coal mines.Thus,a modified true triaxial Hopkinson bar was employed to explore the dynamic mechanical behaviors of coal at different confining pressures(0–20 MPa)and strain rates(40–220 s^(-1)).The results show that the dynamic peak stress is positively correlated with lateral static pre-stressσy andσz,but negatively correlated with axial static prestressσx.At approximate strain rates,increasing the lateral static pre-stress facilitates increasing the dynamic peak stress,but the minimum lateral static pre-stress is the primary factor limiting a significant increase in dynamic peak stress of coal.Furthermore,the dynamic differential stress is linearly related to the logarithm of strain rate,and the peak strain varies linearly with strain rate.However,there is no significant correlation between confining pressure and peak strain.Moreover,X-ray CT images and photographic fracture observations of coal samples show the failure patterns under uniaxial and triaxial conditions are splitting failure and shear failure,respectively.The device provides a viable approach for fully comprehending the dynamic mechanical behaviors of rock-like material in complex stress conditions. 展开更多
关键词 COAL True triaxial SHPB test dynamic mechanical properties Failure characteristics
下载PDF
Physical modeling of long-term dynamic characteristics of the subgrade for medium-low-speed maglevs
2
作者 Minqi Dong Wubin Wang +4 位作者 Chengjin Wang Zhichao Huang Zhaofeng Ding Zhixing Deng Qian Su 《Railway Engineering Science》 2023年第3期293-308,共16页
To investigate the dynamic characteristics and long-term dynamic stability of the new subgrade structure of medium-low-speed(MLS)maglevs,cyclic vibration tests were performed under natural and rainfall conditions,and ... To investigate the dynamic characteristics and long-term dynamic stability of the new subgrade structure of medium-low-speed(MLS)maglevs,cyclic vibration tests were performed under natural and rainfall conditions,and the dynamic response of the subgrade structure was monitored.The dynamic response attenuation characteristics along the depth direction of the subgrade were compared,and the distribution characteristics of the dynamic stress on the surface of the subgrade along the longitudinal direction of the line were analyzed.The critical dynamic stress and cumulative deformation were used as indicators to evaluate the long-term dynamic stability of the subgrade.Results show that water has a certain effect on the dynamic characteristics of the subgrade,and the dynamic stress and acceleration increase with the water content.With the dowel steel structure set between the rail-bearing beams,stress concentration at the end of the loaded beam can be prevented,and the diffusion distance of the dynamic stress along the longitudinal direction increases.The dynamic stress measured in the subgrade bed range is less than 1/5 of the critical dynamic stress.The postconstruction settlement of the subgrade after similarity ratio conversion is 3.94 mm and 7.72 mm under natural and rainfall conditions,respectively,and both values are less than the 30 mm limit,indicating that the MLS maglev subgrade structure has good long-term dynamic stability. 展开更多
关键词 Medium-low-speed maglev SUBGRADE dynamic characteristics Long-term dynamic stability Model test
下载PDF
TEST METHOD OF HIGH-SPEED ON-OFF VALVE DYNAMIC CHARACTERISTICS 被引量:2
3
作者 FU Linjian KONG Xiaowu QIU Minxiu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第1期63-66,共4页
According to the valve port features of high speed on-off valve and its actions, the valve port can be simplified into an a-type half bridge construction. A method that tests the dynamic characteristics of the high sp... According to the valve port features of high speed on-off valve and its actions, the valve port can be simplified into an a-type half bridge construction. A method that tests the dynamic characteristics of the high speed on-off valve by the output pressure signal of the a-type half bridge is proposed. Having analyzed the factors related to the dynamic characteristics of an a-type half bridge, a rule for designing the outlet chamber's volume is worked out. According to the rule, a test stand is built to test the self-developed high-speed on-off valve. From the test results, it can be seen that with the outlet chamber's volume controlled by the rule the rise time of the pressure signals driven by signals with different frequencies changes very little. The test results conform to the simulation results, which nroves the correctness of the method. 展开更多
关键词 High-speed on-off valve dynamic characteristics test method
下载PDF
Research on dynamic characteristics model test scheme for middle pylon of multi-pylon multi-span suspension bridges
4
作者 Zhang Yufeng Zhang Dachang 《Engineering Sciences》 EI 2012年第3期64-71,共8页
Multi-pylon multi-span suspension bridge is a new type super flexible structure system, and the rigidity design of middle pylon is one of the main difficult technical issues. Due to the requirements of longitudinal ri... Multi-pylon multi-span suspension bridge is a new type super flexible structure system, and the rigidity design of middle pylon is one of the main difficult technical issues. Due to the requirements of longitudinal rigidity, the structural form and the corresponding foundation type of middle pylon are different from those of the ordinary steel pylon, and the complicated dynamic characteristics make the calculation quite difficult. In this article, exploration has been made in selection of similarity ratio and model materials, section simulation, restriction conditions simulation, fixing of mass blocks, fabrication scheme and testing method by taking into account different construction and working conditions such as restriction conditions and working environment of a three-pylon suspension bridge, to conduct the test experimental design of the dynamic behavior of the middle pylon, with the purpose to reveal its dynamic characteristics and make comparison and analysis with theoretical assumptions, to provide basis for anti-wind and anti-seismic design and reference for the design and research of three-pylon two-span suspension bridges in the future. 展开更多
关键词 悬索桥 钢塔 试验方案 特性模型 多跨 刚度设计 动态特性 测试方法
下载PDF
Dynamic mechanical characteristics and application of constant resistance energy-absorbing supporting material 被引量:10
5
作者 Qi Wang Shuo Xu +3 位作者 Manchao He Bei Jiang Huayong Wei Yue Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第3期447-458,共12页
In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cab... In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cables with high strength,high elongation,and high energy-absorbing capacity.Therefore,a constant resistance energy-absorbing(CREA)material is developed.In this study,the dynamic characteristics of the new material are obtained via the drop hammer tests and the Split Hopkinson Pressure Bar(SHPB)tests of the new material and two common bolt(CB)materials widely used in the field.The test results of drop hammer test and SHPB test show that the percentage elongation of CREA material is more than 2.64 and 3.22 times those of the CB material,and the total impact energy acting on CREA material is more than 18.50 and 21.84 times,respectively,indicating that the new material has high elongation and high energy-absorbing capacity.Subsequently,the CREA bolts and cables using the new material are developed,which are applied in roadways with high stress and strong dynamic disturbance.The field monitoring results show that CREA bolts and cables can effectively control the surrounding rock deformation and ensure engineering safety. 展开更多
关键词 Constant resistance energy-absorbing Supporting material dynamic impact tests Mechanical characteristics Field application
下载PDF
Dynamic Characteristics Evaluation of Innovative UHPC Pedestrian Cable Stayed Bridge 被引量:5
6
作者 Won Jong Chin Young Jin Kim +1 位作者 Jeong-Rae Cho Jong Sup Park 《Engineering(科研)》 2012年第12期869-876,共8页
KICT (Korea Institute of Construction Technology) is conducting a project called “SUPER BRIDGE 200—Development of Low Cost and Long Life Hybrid Cable Stayed Bridge”. This project aims to reduce the construction and... KICT (Korea Institute of Construction Technology) is conducting a project called “SUPER BRIDGE 200—Development of Low Cost and Long Life Hybrid Cable Stayed Bridge”. This project aims to reduce the construction and main- tenance costs of long-span bridges by 20% and double their lifetime through the exploitation of ultra-high performance concrete (UHPC). This paper presents the design and construction of the first pedestrian cable stayed bridge using UHPC developed by KICT. UHPC, compared to conventional concrete, has not only high compressive and tensile strengths but also high ductility. The UHPC developed at KICT is a steel fiber-reinforced cement compound presenting design compressive strength larger than 180 MPa and design tensile strength exceeding 10 MPa with water-to-binder ratio below 0.24 and admixing of 2 volume percentage of steel fiber. To show the applicability of UHPC to structures, a pedestrian cable stayed bridge (Super Bridge I) exploiting the characteristics of the developed UHPC has been planned, designed and erected at KICT. The dimension of UHPC deck is 2.7 m × 7 m as a precast segment with a typical thickness of deck of only 7 cm. However, harmful crack was observed in the deck at the time of the fabrication of the deck segments. Accordingly, new fabrication method was conceived and applied to prevent cracking of the UHPC slender deck. Four UHPC deck segments were fabricated successfully without any crack. After construction, the dynamic characteristics (natural frequencies and mode shapes) were evaluated through vibration tests since several users felt excess vibration. A vertical tuned mass damper (TMD) was proposed and installed on the parapet of the bridge. The TMD reduces the acceleration by about 30% from 0.0316 g to 0.0244 g when two pedestrians are crossing the bridge. 展开更多
关键词 UHPC PEDESTRIAN CABLE Stayed BRIDGE dynamic characteristics test TMD
下载PDF
Three-Step Damage Identification Method Based on Dynamic Characteristics
7
作者 孙国帅 柳春光 +1 位作者 张士博 郝二通 《Transactions of Tianjin University》 EI CAS 2014年第5期379-384,共6页
A three-step damage identification method based on dynamic characteristics is proposed to improve the structure reliability and security and avoid serious accident. In the proposed method, the frequency and difference... A three-step damage identification method based on dynamic characteristics is proposed to improve the structure reliability and security and avoid serious accident. In the proposed method, the frequency and difference of modal curvature(DMC) are used as damage indexes. Firstly, the detection of the occurrence of damage is addressed by the frequency or the square of frequency change. Then the damage location inside the structure is measured by the DMC. Finally, with the stiffness reduction rate as a damage factor, the amount of damage is estimated by the optimization algorithm. The three-step damage identification method has been validated by conducting the simulation on a cantilever beam and the shaking table test on a submerged bridge. The results show that the method proposed in this paper can effectively solve the damage identification problem in theory and engineering practice. 展开更多
关键词 损伤指标 识别方法 动态特性 频率变化 严重事故 模态曲率 损伤位置 损伤因子
下载PDF
Research on damage failure mechanism and dynamic mechanical behavior of layered shale with different angles under confining pressure
8
作者 Ning Luo Haohao Zhang +4 位作者 Yabo Chai Penglong Li Cheng Zhai Jianan Zhou Tianran Ma 《Deep Underground Science and Engineering》 2023年第4期337-345,共9页
The hydrostatic or confining pressure of deep rocks has a significant impact on the mechanical behavior of brittle materials.Especially when confining pressure is applied,the mechanical properties of rock materials will ... The hydrostatic or confining pressure of deep rocks has a significant impact on the mechanical behavior of brittle materials.Especially when confining pressure is applied,the mechanical properties of rock materials will undergo significant changes.Considering that the process of shale sample subjected to impact load is in a closed container in the dynamic triaxial SHPB test,the failure process of the sample cannot be observed.Meanwhile,the activation volume of the shale sample would be large and local failure would occur in the test under the high strain rate loading.Therefore,thefinite element model of shale considering the bedding effect under confining pressure was established in this study.Taking shale materials with different bedding dip angles as simulation objects,the dynamic failure characteristics of shale were studied using the dynamic analysis software ANSYS/LS‐DYNA from three aspects:stress‐strain curve,failure growth process,and failure morphology.The research results obtained can serve as the key technical parameters for deep resource extraction. 展开更多
关键词 ANSYS/LS‐DYNA dynamic failure characteristics dynamic triaxial SHPB test shales with different bedding
下载PDF
Tire Dynamics Modeling Method Based on Rapid Test Method 被引量:1
9
作者 Dang Lu Lei Lu +2 位作者 Haidong Wu Wei Wang Manyi Lv 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第6期228-237,共10页
Combined with the tire dynamics theoretical model,a rapid test method to obtain tire lateral and longitudinal both steady-state and transient characteristics only based on the tire quasi-steady-state test results is p... Combined with the tire dynamics theoretical model,a rapid test method to obtain tire lateral and longitudinal both steady-state and transient characteristics only based on the tire quasi-steady-state test results is proposed.For steady state data extraction,the test time of the rapid test method is half that of the conventional test method.For transient tire characteristics the rapid test method omits the traditional tire test totally.At the mean time the accuracy of the two method is much closed.The rapid test method is explained theoretically and the test process is designed.The key parameters of tire are extracted and the comparison is made between rapid test and traditional test method.The result show that the identification accuracy based on the rapid test method is almost equal to the accuracy of the conventional one.Then,the heat generated during the rapid test method and that generated during the conventional test are calculated separately.The comparison shows that the heat generated during the rapid test is much smaller than the heat generated during the conventional test process.This benefits to the reduction of tire wear and the consistency of test results.Finally,it can be concluded that the fast test method can efficiently,accurately and energy-efficiently measure the steady-state and transient characteristics of the tire. 展开更多
关键词 Tire dynamics modeling Rapid test method Tire steady-state and transient characteristics Identificationof tire characteristics parameterg
下载PDF
Dynamic Test of Hydro Mechanical Composite Transmission for Cotton Picker 被引量:1
10
作者 Xiangdong Ni Mingxi Bao 《Journal of Beijing Institute of Technology》 EI CAS 2020年第3期366-378,共13页
With a transmission system suitable for a medium or large self-propelled cotton picker as the object of the study,the following work focuses on the influence law of an independently designed hydro-mechanical continuou... With a transmission system suitable for a medium or large self-propelled cotton picker as the object of the study,the following work focuses on the influence law of an independently designed hydro-mechanical continuously variable transmission(HMCVT)in the process of changing sections.An HMCVT simulation model was established using the multibody dynamics Simulation X software.The accuracy of the simulation model was verified by comparing the numerical values of the output speed of the HMCVT with model predictions.The HMCVT test bench was built independently using a John Deere 4045HYC11 diesel engine as power input.The engine speed,load torque,oil pressure,and flow of speed regulating valve were considered the influencing factors.The sliding friction power was the response index for the segment change process test.We analysed the reasons for the decrease in output speed during the shifting process,and proposed to effectively reduce the stable speed difference before and after the output shaft shifting by shifting the stage ahead(with displacement ratio of-0.96).This study provides a reference value for the smoothness of the HMCVT of the self-propelled cotton picker,and is relevant in promoting the use of the cotton picker. 展开更多
关键词 transmission scheme shifting process test analysis dynamic characteristics
下载PDF
The Dynamic Characteristic Experimental Method on the Composite Foundation with Rigid-Flexible Compound Piles 被引量:2
11
作者 Jihui Ding Weiyu Wang +2 位作者 Tuo Zhao Junhui Feng Panxing Zhang 《Open Journal of Civil Engineering》 2013年第2期94-98,共5页
Based on the idea of optimization design of pile type, the composite foundations, which include cememt-flyash-gaavel (for short CFG) long piles and cement-soil (for short CS) short piles, and CS piles with CFG core as... Based on the idea of optimization design of pile type, the composite foundations, which include cememt-flyash-gaavel (for short CFG) long piles and cement-soil (for short CS) short piles, and CS piles with CFG core as well, are formed. The method of the site dynamic characteristic tests of the composite foundations is discussed. The test results show that fireworks bomb may replace demolitions as the vibration resource. Vibration time is about 0.1 sec. Horizontal vibration major frequency is at 22.476 - 56.436 Hz, and vertical vibration major frequency is at 15.538 - 55.884 Hz. The pile arrangements of the composite foundation in the same site have more effect on the acceleration peak value. From the point of vibration, the anti-seismic effect of the CS piles with CFG core is better than others. 展开更多
关键词 Cement-Soil PILES Cememt-Flyash-Gaavel PILES Composite FOUNDATION dynamic characteristic In-Site test
下载PDF
The Plate Load Test in the Application of Dynamic Compaction Test of Subgrade Bearing Capacity
12
作者 Xichang Zhang Yuehong Su Zhi Zhang 《土木工程与技术(中英文版)》 2013年第2期34-39,共6页
关键词 土木工程 建筑工程 建筑设计 建筑材料
下载PDF
Dynamic finite element model updating of prestressed concrete continuous box-girder bridge 被引量:6
13
作者 Lin Xiankun Zhang Lingmi +1 位作者 Guo Qintao Zhang Yufeng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2009年第3期399-407,共9页
The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a... The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a real-coded accelerating genetic algorithm (RAGA). The objective functions are defined based on natural frequency and modal assurance criterion (MAC) metrics to evaluate the updated FEM. Two objective functions are defined to fully account for the relative errors and standard deviations of the natural frequencies and MAC between the AVT results and the updated FEM predictions. The dynamically updated FEM of the bridge can better represent its structural dynamics and serve as a baseline in long-term health monitoring, condition assessment and damage identification over the service life of the bridge . 展开更多
关键词 prestressed concrete continuous box-girder bridge field ambient vibration testing dynamic characteristics model updating accelerating genetic algorithm objective function
下载PDF
Evaluation of Dynamic Soil-Structure Interaction and Dynamic Seismic Soil Pressures Acting on It Subjected to Strong Earthquake Motions 被引量:1
14
作者 车爱兰 IWATATE Takahiro 葛修润 《Journal of Shanghai Jiaotong university(Science)》 EI 2006年第4期530-536,共7页
In order to clarify the damage mechanism of the subway structure, the dynamic soil-structure interaction and the dynamic forces acting on the structure, a series of shaking table tests and simulation analyses were per... In order to clarify the damage mechanism of the subway structure, the dynamic soil-structure interaction and the dynamic forces acting on the structure, a series of shaking table tests and simulation analyses were performed. The seismic response of the structure and the dynamic forces acting on the structure due to sinusoidal and random waves were investigated with special attention to the dynamic soil-structure interaction. The result shows that the compression seismic soil pressures and extension seismic soil pressures simultaneously act on the sidewalls, and big shear stress also acts on the ceiling slab due to horizontal excitation. The seismic soil pressure could be approximated to hyperbola curve, and reached a peak value with increase of the shear strain of the model ground. In addition, a slide and exfoliation phenomenon between the structure and the surrounding ground was simulated, using the nonlinear analyses. The foundation is provided for amending the calculation method of seismic soil pressure and improving the anti-earthquake designing level of underground structure. 展开更多
关键词 SUBWAY structure dynamic SEISMIC soil pressure dynamic soil-structure interaction SHAKING TABLE tests dynamic analyses nonlinear characteristics
下载PDF
Energy-based dynamic parameter identification for Pasternak foundation model
15
作者 Wang-Xi Zhang Wei-Lei Lv +3 位作者 Jin-Yi Zhang Xiong Wang Hyeon-Jong Hwang Wei-Jian Yi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第3期631-643,共13页
Parameter identification of Pasternak foundation models(PFM)is never satisfactory,which discourages the application and popularization of PFM.In the present study,an energy-based model to predict the dynamic foundatio... Parameter identification of Pasternak foundation models(PFM)is never satisfactory,which discourages the application and popularization of PFM.In the present study,an energy-based model to predict the dynamic foundation coefficients was proposed using the vibration kinetic energy and potential energy of a Pasternak foundation-rigid plate system.On the basis of the Pasternak foundation,the relationship among the natural frequency,dynamic foundation coefficients,rigid plate configuration,and vibrating soil equivalent mass per unit area was considered.To obtain the natural frequencies of the Pasternak foundation-rigid plate system,dynamic tests were performed.Using two or more dynamic test results of various rigid plates on a foundation,a set of equations of dynamic foundation coefficients was set up to directly identify the foundation coefficients and equivalent mass per unit area of vibrating soil.The feasibility of the proposed method was verified by comparing it with the outdoor and indoor test results and finite element analysis results.When the proposed method is used to obtain the dynamic parameters,PFM can be generalized and applied more widely in engineering practice. 展开更多
关键词 Pasternak foundation dynamic tests vibrating soil mass dynamic foundation coefficients dynamic characteristics
下载PDF
Dynamic behaviors of pretensioned cable AERORail structure
16
作者 李方元 吴培峰 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2267-2276,共10页
The AERORail, a new aerial transport platform, was chosen as the object of this work. Following a review of the literature on static behaviors, model tests on the basic dynamic mechanical characteristics were conducte... The AERORail, a new aerial transport platform, was chosen as the object of this work. Following a review of the literature on static behaviors, model tests on the basic dynamic mechanical characteristics were conducted. A series of 90 tests were completed with different factors, including tension force, vehicle load and vehicle speed. With regard to the proper tension and vehicle load, at a certain speed range, the tension increments of the rail's cable were proved relatively small. It can be assumed that the change of tension is small and can be reasonably ignored when the tension of an entire span is under a dynamic load. When the tension reaches a certain range, the calculation of the cable track structure using classical cable theory is acceptable. The tests prove that the average maximum dynamic amplification factor of the deflection is small, generally no more than 1.2. However, when the vehicle speed reaches a certain value, the amplified factor will reach 2.0. If the moving loads increase, the dynamic amplification factor of dynamic deflection will also increase. The tension will change the rigidity of the structure and the vibration frequency; furthermore, the resonance speed will change at a certain tension. The vibration is noticeable when vehicles pass through at the resonance speed, and this negative impact on driving comfort requires the right velocity to avoid the resonance. The results demonstrate that more design details are required for the AERORail structure. 展开更多
关键词 预应力索结构 动态特性 动力放大系数 车辆速度 动态力学特性 模型试验 车辆负载 振动频率
下载PDF
纳米硅溶胶改良辽宁台安砂土的抗液化性能研究
17
作者 刘钢 任星龙 +2 位作者 赵明志 郭文博 张冲 《地震工程学报》 CSCD 北大核心 2024年第1期39-49,共11页
辽宁台安砂土属于易液化砂,提升其抗液化性能具有重要的工程意义。文章针对纳米硅溶胶(CS)对辽宁台安砂土抗液化性能的改良效果进行探究,通过不排水动三轴试验,对纯砂样和改良砂样的液化特性进行对比研究,分析CS浓度和固化时间两个参量... 辽宁台安砂土属于易液化砂,提升其抗液化性能具有重要的工程意义。文章针对纳米硅溶胶(CS)对辽宁台安砂土抗液化性能的改良效果进行探究,通过不排水动三轴试验,对纯砂样和改良砂样的液化特性进行对比研究,分析CS浓度和固化时间两个参量对改良砂样动力特性的影响。研究结果表明:(1)CS能够显著提升台安砂土的抗液化性能,在动载作用下改良砂样均未发生液化破坏。(2)随CS浓度和固化时间的增加,试样动孔压u_(d)、动应变ε_(d)呈现先迅速下降后趋于平缓的发展规律;当CS浓度增至4%、固化时间达到3周后,试样抗液化性能的提升效果不再明显。(3)改良砂样的滞回曲线变得更加稳定。随CS浓度增加,阻尼先降低后趋于稳定,动弹性模量逐渐增大并趋于平缓,但伴随有一定的波动;随固化时间增大,阻尼呈减小趋势,动弹性模量呈增大趋势。研究成果可为辽宁台安地区砂土液化治理提供参考依据。 展开更多
关键词 纳米硅溶胶 台安砂土 动三轴试验 抗液化性能 动力特性
下载PDF
基于聚焦激波的微结构非接触式激励方法研究
18
作者 佘东生 于震 田江平 《传感器与微系统》 CSCD 北大核心 2024年第4期41-44,共4页
为了解决MEMS微结构非接触式激励的问题,提出了一种基于聚焦激波的非接触式激励方法。该方法的基本原理是利用高压电容空气放电来产生激波,再通过半椭球腔体对激波进行聚焦,从而实现对微结构的非接触式激励。基于该方法搭建了微结构动... 为了解决MEMS微结构非接触式激励的问题,提出了一种基于聚焦激波的非接触式激励方法。该方法的基本原理是利用高压电容空气放电来产生激波,再通过半椭球腔体对激波进行聚焦,从而实现对微结构的非接触式激励。基于该方法搭建了微结构动态特性测试系统,并对矩形等截面和T型单晶硅微悬臂梁的动态特性进行了测试实验,获得了两种微悬臂梁的一阶有阻尼固有频率和阻尼比。实验结果表明:矩形等截面和T型单晶硅微悬臂梁一阶无阻尼固有频率分别为5 912 Hz和2 150 Hz。通过动态测试实验验证了基于聚焦激波非接触式激励方法在MEMS微结构激励上的有效性。 展开更多
关键词 聚焦激波 MEMS微结构 非接触式激励 动态特性测试
下载PDF
试验台约束对滑动轴承动特性识别精度的影响
19
作者 陈润霖 唐杰 +3 位作者 徐帆 杜辰 崔亚辉 刘凯 《润滑与密封》 CAS CSCD 北大核心 2024年第3期189-195,共7页
在滑动轴承的动特性测试中,试验台参数对动特性测试精度有重要的影响。以某倒置式轴承动特性试验台为研究对象,基于轴承动力学正反问题,提出滑动轴承动特性系数识别精度的仿真评估方法,分析不同激振频率时试验台约束参数对轴承动特性系... 在滑动轴承的动特性测试中,试验台参数对动特性测试精度有重要的影响。以某倒置式轴承动特性试验台为研究对象,基于轴承动力学正反问题,提出滑动轴承动特性系数识别精度的仿真评估方法,分析不同激振频率时试验台约束参数对轴承动特性系数识别精度的影响规律,并对激振频率和约束参数的取值范围进行优选。结果表明:在较低激振频率的条件下,当约束刚度和约束阻尼取值较小时,动特性系数的识别精度受测试误差的影响不大,随着约束刚度和约束阻尼取值增大到一定值,动特性系数的识别精度受测试误差的影响迅速增大。针对研究的试验台,选择激振频率在30~300 Hz之间,选择试验台约束刚度小于试验轴承刚度的0.3%,试验台约束阻尼小于试验轴承阻尼的7%时,能够保证较好的轴承动特性系数的测试精度。 展开更多
关键词 滑动轴承试验台 约束刚度和阻尼 轴承动特性系数 识别精度
下载PDF
压电陶瓷驱动的MEMS微结构底座激励方法研究
20
作者 佘东生 陈亚男 田江平 《机械设计与制造》 北大核心 2024年第3期31-34,共4页
介绍了基于压电陶瓷底座激励方法的发展现状,总结了激励方法在具体实现方式上存在的问题。压电陶瓷在工作过程中会受到横向剪切力作用,导致压电陶瓷的损坏;弹性底座反复变形会导致微结构脱落。设计了一种由带有球冠状凹槽的上联接块和... 介绍了基于压电陶瓷底座激励方法的发展现状,总结了激励方法在具体实现方式上存在的问题。压电陶瓷在工作过程中会受到横向剪切力作用,导致压电陶瓷的损坏;弹性底座反复变形会导致微结构脱落。设计了一种由带有球冠状凹槽的上联接块和带有球冠状凸起的下联接块组成的点接触式可动底座结构,并设计了一种由圆柱安装体和三个安装臂组成的弹性底座,制作了基于压电陶瓷的底座激励装置,搭建了微结构动态特性测试系统,并对两种微结构的动态特性进行了测试实验,结果表明改进后的压电陶瓷底座激励装置可以有效的实现对微结构的激励。 展开更多
关键词 激励方法 压电陶瓷 底座结构 动态特性测试
下载PDF
上一页 1 2 57 下一页 到第
使用帮助 返回顶部