期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Path-dependent backward stochastic Volterra integral equations with jumps,differentiability and duality principle
1
作者 Ludger Overbeck Jasmin A.L.Roder 《Probability, Uncertainty and Quantitative Risk》 2018年第1期109-145,共37页
We study the existence and uniqueness of a solution to path-dependent backward stochastic Volterra integral equations(BSVIEs)with jumps,where path-dependence means the dependence of the free term and generator of a pa... We study the existence and uniqueness of a solution to path-dependent backward stochastic Volterra integral equations(BSVIEs)with jumps,where path-dependence means the dependence of the free term and generator of a path of a c`adl`ag process.Furthermore,we prove path-differentiability of such a solution and establish the duality principle between a linear path-dependent forward stochastic Volterra integral equation(FSVIE)with jumps and a linear path-dependent BSVIE with jumps.As a result of the duality principle we get a comparison theorem and derive a class of dynamic coherent risk measures based on path-dependent BSVIEs with jumps. 展开更多
关键词 Path-dependent backward stochastic Volterra integral equation Jump diffusion Path-differentiability Duality principle Comparison theorem Functional Ito formula dynamic coherent risk measure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部