期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
Dynamic compressive property and failure behavior of extruded Mg-Gd-Y alloy under high temperatures and high strain rates 被引量:6
1
作者 Jin-cheng Yu Zheng Liu +1 位作者 Yang Dong Zhi Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS 2015年第2期134-141,共8页
For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical prope... For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical properties of extruded Mg-Gd-Y Magnesium alloy at ambient temperature(300 K),200℃(473 K)and 300℃(573 K)temperature.The samples after compression were analyzed by scanning electron microscope(SEM)and metallographic microscope.Dynamic mechanical properties,crack performance and plastic deformation mechanism of extruded Mg-Gd-Y Magnesium alloy along the extrusion direction(ED)were discussed.The results show that,extruded Mg-Gd-Y Magnesium alloy has the largest dynamic compressive strength which is 535 MPa at ambient temperature(300 K)and strain rate of 2826 s^(−1).When temperature increases,dynamic compressive strength decreases,while ductility increases.The dynamic compression fracture mechanism of extruded Mg-Gd-Y Magnesium alloy is multi-crack propagation and intergranular quasi-cleavage fracture at both ambient temperature and high temperature.The dynamic compressive deformation mechanism of extruded Mg-Gd-Y Magnesium alloy is a combination of twinning,slipping and dynamic recrystallization at both ambient temperature and high temperature. 展开更多
关键词 Extruded Mg-Gd-Y magnesium alloy Split Hopkinson Pressure Bar dynamic compressive property Failure behavior High strain rates High temperature
下载PDF
Effect of Porosity and Cell Size on the Dynamic Compressive Properties of Aluminum Alloy Foams 被引量:1
2
作者 YiFENG ShishengHU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第5期395-397,共3页
The dynamic mechanical properties of open-cell aluminum alloy foams with different relative densities and cell sizes have been investigated by compressive tests. The strain rates varied from 700 s-1 to 2600 s-1. The e... The dynamic mechanical properties of open-cell aluminum alloy foams with different relative densities and cell sizes have been investigated by compressive tests. The strain rates varied from 700 s-1 to 2600 s-1. The experimental results showed that the dynamic compressive stress-strain curves exhibited a typical three-stage behavior: elastic, plateau and densification. The dynamic compressive strength of foams is affected not only by the relative density but also by the strain rate and cell size. Aluminum alloy foams with higher relative density or smaller cell size are more sensitive to the strain rate than foams with lower relative density or larger cell size. 展开更多
关键词 Aluminum alloy POROSITY dynamic compressive property Foam
下载PDF
Quasi-static and Dynamic Compressive Fracture Behavior of SiC_f/SiC Composites 被引量:1
3
作者 高晓菊 成来飞 +1 位作者 YAN Dongming LI Liangjun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第3期484-488,共5页
To understand the quasi-static and dynamic compressive mechanical behavior of two- dimensional SiC fiber-reinforced SiC composites (2D-SiC1/SiC), their compressive behavior at room temperature was investigated at a ... To understand the quasi-static and dynamic compressive mechanical behavior of two- dimensional SiC fiber-reinforced SiC composites (2D-SiC1/SiC), their compressive behavior at room temperature was investigated at a strain rate from 10-4 to 104/s, and the fracture surfaces and damage morphology were observed. The results show that the dynamic failure strength of 2D-SiC1/SiC obeys the Weibull distribution, and the Weibull modulus is 5,66. Meanwhile, 2D-SiC1/SiC presents a transition from brittle to tough with a decrease of strain rate, and 2D-SiC1/SiC has a more significant strain rate sensitivity compared to the 2D-C/SiC composites. The failure mode of 2D-SiC1/SiC depends upon the strain rate. 展开更多
关键词 2D-SiC1/SiC dynamic compressive SHPB WeibuU distribution failure mode
下载PDF
Dynamic Impact Compressive Behavior Investigation of Sisal Fiber-reinforced Coral Seawater Concrete
4
作者 MA Haiyan TAN Yongshan +2 位作者 YU Hongfa YUE Chengjun ZHANG Yan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第5期1034-1043,共10页
Split Hopkinson pressure bar(SHPB)was used to investigate the dynamic compressive properties of sisal fiber reinforced coral aggregate concrete(SFCAC).The results showed that,with the increase of strain rate,the dynam... Split Hopkinson pressure bar(SHPB)was used to investigate the dynamic compressive properties of sisal fiber reinforced coral aggregate concrete(SFCAC).The results showed that,with the increase of strain rate,the dynamic compressive strength,peak strain and toughness index of SFCAC are all greater than its static properties,indicating that SFCAC is a kind of rate-sensitive material.When the sisal fiber was blended,the failure mode showed obvious ductility.At high strain rates,the SFCAC without sisal fiber specimen was comminuted,and the SFCAC showed a"cracked without breaking"state.The results indicated that the sisal fiber played a significant role in reinforcing and strengthening the properties of concrete.The finite element software LS-DYNA was used to simulate two working conditions with strain rates of 78 and 101 s-1.The stressstrain curves and failure patterns obtained were in good agreement with the experimental results. 展开更多
关键词 coral aggregate concrete sisal fiber dynamic compressive strain-rate effect
下载PDF
Dynamic Uniaxial Compressive Tests on Limestone
5
作者 Ajay Kumar Jha 《Journal of Geological Resource and Engineering》 2020年第4期121-132,共12页
The dynamic properties of limestone play a pivotal role while selecting the suitable explosives for any limestone mine.Since the application of explosives creates dynamic loading and is a dynamic event,the determinati... The dynamic properties of limestone play a pivotal role while selecting the suitable explosives for any limestone mine.Since the application of explosives creates dynamic loading and is a dynamic event,the determination of dynamic modulus values is technically more appropriate than the static measurement.The rock fragmentation would significantly improve by investigating the dynamic uniaxial compressive strength as specific fracture energy,stress intensity factor,fracture toughness of any detonating blast hole depend heavily on dynamic rock property and not on static rock property.Most of the limestone projects globally are still accustomed with using static compressive strength to understand the rock fragmentation.The present papers deal with determination of dynamic uniaxial compressive property using split Hopkinson pressure bar(SHPB)system.The nano second high speed camera with laser captures the crack surface opening velocity during dynamic loading.It was observed during data analysis that dynamic compressive strength of limestone increases by 1.7-4.9 times of the static strength.It may be concluded by the study that determination of dynamic compressive strength is paramount for understanding the rock fragmentation. 展开更多
关键词 Rock fragmentation SHPB dynamic compressive strength
下载PDF
Correlation Between Dynamic Compressive Strength and Fracture Behaviors of Bulk Metallic Glasses 被引量:2
6
作者 Wenqing Li Zhengwang Zhu +7 位作者 Guojie Li Long Zhang Zhengkun Li Huameng Fu Hongwei Zhang Hong Li Aimin Wang Haifeng Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2020年第10期1407-1415,共9页
The mechanical behaviors of Zr43.5Cu43.5Ni4Al8Nb1,Zr55.4Cu31.6Ni4Al8Nb1,Ti32.8Zr30.2Ni5.3Cu9Be22.7(at.%)metallic glass at different strain rates were studied.For all the present alloys,the dispersion over 700 MPa was ... The mechanical behaviors of Zr43.5Cu43.5Ni4Al8Nb1,Zr55.4Cu31.6Ni4Al8Nb1,Ti32.8Zr30.2Ni5.3Cu9Be22.7(at.%)metallic glass at different strain rates were studied.For all the present alloys,the dispersion over 700 MPa was observed on the strength in the repeated dynamic compressions,which was much stronger than that of the quasi-static compressive strength.Such the dispersion of the dynamic compressive strength was well correlated with the corresponding fracture behaviors.The area of fracture surface was calculated and also showed a strong dispersion for all the fractured specimens tested at the strain rate of 500 s^-1 and 1000 s^-1.All the specimens showed a linear relationship between the square of dynamic compressive strength and the area of fracture surface in the dynamic compression tests.This phenomenon was mainly thought to be related to the difference of mean initial free volume concentration of different samples,stress concentration caused by the split Hopkinson pressure bar experimental setup and high sensitivity of defects under dynamic deformation.These findings were beneficial to deeply understand the effect of strain rate on the mechanical properties of the metallic glass. 展开更多
关键词 Metallic glass dynamic compression Weibull statistics Shear bands
原文传递
Dynamic compressive behavior and constitutive relations of lanthanum metal
7
作者 王焕然 蔡灿元 +2 位作者 陈大年 马东方 邓高涛 《Journal of Rare Earths》 SCIE EI CAS CSCD 2012年第5期473-479,共7页
The dynamic compressive behavior and constitutive relations of Lanthanum(La) metal was determined by using the first compression in split Hopkinson pressure bar(SHPB) tests at different strain rates and temperatur... The dynamic compressive behavior and constitutive relations of Lanthanum(La) metal was determined by using the first compression in split Hopkinson pressure bar(SHPB) tests at different strain rates and temperatures.The constitutive relation of La metal determined in a certain range of strains was employed and adjusted in numerically simulating large deformations of La metal specimens generated by multi-compression in SHPB tests and recorded by a high-speed camera.The dynamic compressive behavior and constitutive relations of La metal under multiple SHPB tests loading was also revealed.The results of scanning electron microscope(SEM) investigation of the recovered La metal specimens for typical tests showed that there was a variety of deformation microstructures depending on strain rate,temperature and stress state. 展开更多
关键词 lanthanum metal dynamic compression constitutive relation multi-compression multiple impact SHPB rare earths
原文传递
Dynamic fragmentation of microwave irradiated rock 被引量:2
8
作者 Shuai Wang Ying Xu +1 位作者 Kaiwen Xia Tianyang Tong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第2期300-310,共11页
The microwave-assisted rock fragmentation has been proven to be a promising approach in reducing cutting tools wear and improving efficiency in rock crushing and excavation.Thus,understanding the influence of damage i... The microwave-assisted rock fragmentation has been proven to be a promising approach in reducing cutting tools wear and improving efficiency in rock crushing and excavation.Thus,understanding the influence of damage induced by microwave irradiation on rock fragmentation is necessary.In this context,cylindrical Fangshan granite(FG)specimens were exposed to microwave irradiation at a power of 6 kW for different durations up to 4.5 min.The damages of the specimens induced by irradiation were quantified by using both X-ray micro-CT scanning and ultrasonic wave measurement.The CT value and Pwave velocity decreased with increase of irradiation duration.The irradiated specimens were then tested using a split Hopkinson pressure bar(SHPB)system to simulate rock fragmentation.A momentum-trap technique was utilized to ensure single-pulse loading on the specimen in SHPB tests,enabling valid fragment size distribution(FSD)analysis.The dependence of dynamic uniaxial compressive strength(UCS)on the irradiation duration and loading rate was revealed.The dynamic UCS increased with increase of loading rate while decreased with increase of irradiation duration.Using the sieve analysis,three fragmentation types were proposed based on FSD,which were dictated by both loading rate and irradiation duration.In addition,an average fragment size was proposed to quantify FSD.The results showed that the average fragment size decreased with increase of loading rate.A loading rate range was identified,where a dramatic reduction of the average fragment size occurred.The dependence of fragmentation on the irradiation duration and loading rate was also discussed. 展开更多
关键词 Microwave irradiation Split Hopkinson pressure bar(SHPB) Momentum-trap dynamic compressive strength Fragment size distribution(FSD) Fangshan granite(FG)
下载PDF
Early Treatment Outcome of Humeral Shaft Fracture Non-Union in Adults: Comparative Study of Plating versus Interlocking Nailing
9
作者 Abdullallahi Bello Galadima Lukman Olalekan Ajiboye +1 位作者 Muhammad Nuhu Salihu Isha Nurudeen 《Health》 2024年第4期371-381,共11页
Background: Fractures of humeral shaft in adults are common injuries. Humeral shafts non-union either from late presentation after initial treatment by traditional bone setters or failed non-operative orthodox care is... Background: Fractures of humeral shaft in adults are common injuries. Humeral shafts non-union either from late presentation after initial treatment by traditional bone setters or failed non-operative orthodox care is a major problem in this part of the world. This non-union is a major treatment challenge with increased cost of care and morbidity in this part of the world. Humeral shaft non-union can be treated with locked intra-medullary nailing (LIMN) or dynamic compression plating (DCP). Study on comparison of these methods of fixation in this part of the world is scarce in literature search, hence the reason for this study. Objective: The objectives of this study are: (1) to compare early clinical outcome following fixation of humeral shaft fracture nonunion with DCP versus LIMN;(2) to compare the time of radiologic fracture union of DCP with LIMN;(3) to compare complications following fixation of humeral shaft fracture nonunion with DCP versus LIMN. Patients and Methods: This was a randomized control study done for 2 years in which fifty adult patients with humeral shaft non-union were recruited. The patients were grouped into 2 (P = DCP & N = LIMN). Forty five of the patients completed the follow up periods of the study and then analyzed. The P group had ORIF with DCP while the N group had ORIF with LIMN. Both groups had grafting with cancellous bones. Each patient was followed up for a period of 6 months at the time which radiographic union is expected. Any patient without clinical and/or radiographic evidence of union after six months of surgery was diagnosed as having recurrent non-union. The data generated was analyzed using SPSS Version 23. The results were presented in charts and tables. The paired t-test was used while considering p value Result: Forty five patients completed follow up. There was a male preponderance (4:1), right humerus predominated (3:2). Motor vehicular accidents were the commonest cause of the fractures (62%). Most non-union fractures occurred at the level of the middle 3<sup>rd</sup> of the humeral shaft (60%). Failed TBS treatment was the commonest indication for the osteosynthesis (71%). More patients had plating (53%) compared to 47% who had LIMN. Most patients (93.4%) had union between 3 to 6 months irrespective of fixation type with no significant statistical difference between the union rate of DCP and LIMN (p value 0.06) with similar functional outcome and complication rates irrespective of the type of fixation. Conclusion: This study showed that the success rates in term of fracture union, outcome functional grades and complication rates were not directly dependent on the types of the fixation: plating or locked intra-medullary nailing. 展开更多
关键词 Humeral Shaft NON-UNION dynamic Compression Plating Locked Intra-Medullary Nailing Early Treatment Outcome Early Outcome
下载PDF
A double-network hydrogel for the dynamic compression of the lumbar nerve root 被引量:6
10
作者 Hui Li Hua Meng +4 位作者 Yan-Yu Yang Jia-Xi Huang Yong-Jie Chen Fei Yang Jia-Zhi Yan 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第9期1724-1731,共8页
Current animal models of nerve root compression due to lumbar disc herniation only assess the mechanical compression of nerve roots and the inflammatory response. Moreover, the pressure applied in these models is stat... Current animal models of nerve root compression due to lumbar disc herniation only assess the mechanical compression of nerve roots and the inflammatory response. Moreover, the pressure applied in these models is static, meaning that the nerve root cannot be dynamically compressed. This is very different from the pathogenesis of lumbar disc herniation. In this study, a chitosan/polyacrylamide double-network hydrogel was prepared by a simple two-step method. The swelling ratio of the double-network hydrogel increased with prolonged time, reaching 140. The compressive strength and compressive modulus of the hydrogel reached 53.6 and 0.34 MPa, respectively. Scanning electron microscopy revealed the hydrogel's crosslinked structure with many interconnecting pores. An MTT assay demonstrated that the number of viable cells in contact with the hydrogel extracts did not significantly change relative to the control surface. Thus, the hydrogel had good biocompatibility. Finally, the double-network hydrogel was used to compress the L4 nerve root of male sand rats to simulate lumbar disc herniation nerve root compression. The hydrogel remained in its original position after compression, and swelled with increasing time. Edema appeared around the nerve root and disappeared 3 weeks after operation. This chitosan/polyacrylamide double-network hydrogel has potential as a new implant material for animal models of lumbar nerve root compression. All animal experiments were approved by the Animal Ethics Committee of Neurosurgical Institute of Beijing, Capital Medical University, China(approval No. 201601006) on July 29, 2016. 展开更多
关键词 CHITOSAN double-network hydrogel dynamic compression lumbar disc herniation micro-MRI nerve root peripheral neuropathic pain POLYACRYLAMIDE
下载PDF
An RKDG finite element method for the one-dimensional inviscid compressible gas dynamics equations in a Lagrangian coordinate 被引量:2
11
作者 赵国忠 蔚喜军 张荣培 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第2期50-63,共14页
In this paper,Runge-Kutta Discontinuous Galerkin(RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discreti... In this paper,Runge-Kutta Discontinuous Galerkin(RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discretized by the DG method in space and the temporal discretization is accomplished by the total variation diminishing Runge-Kutta method.A limiter based on the characteristic field decomposition is applied to maintain stability and non-oscillatory property of the RKDG method.For multi-medium fluid simulation,the two cells adjacent to the interface are treated differently from other cells.At first,a linear Riemann solver is applied to calculate the numerical ?ux at the interface.Numerical examples show that there is some oscillation in the vicinity of the interface.Then a nonlinear Riemann solver based on the characteristic formulation of the equation and the discontinuity relations is adopted to calculate the numerical ?ux at the interface,which suppresses the oscillation successfully.Several single-medium and multi-medium fluid examples are given to demonstrate the reliability and efficiency of the algorithm. 展开更多
关键词 compressible gas dynamic equations RKDG finite element method Lagrangian coordinate multi- medium fluid
下载PDF
Dynamic Compression Behavior of Ultra-high Performance Cement-based Composite with Hybrid Steel Fiber Reinforcements 被引量:1
12
作者 戎志丹 WANG Yali WU Shenping 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第5期900-907,共8页
Ultra-high performance cement-based composites (UHPCC) is promising in construction of concrete structures that suffer impact and explosive loads.In this study,a reference UHPCC mixture with no fiber reinforcement and... Ultra-high performance cement-based composites (UHPCC) is promising in construction of concrete structures that suffer impact and explosive loads.In this study,a reference UHPCC mixture with no fiber reinforcement and four mixtures with a single type of fiber reinforcement or hybrid fiber reinforcements of straight smooth and end hook type of steel fibers were prepared.Split Hopkinson pressure bar (SHPB) was performed to investigate the dynamic compression behavior of UHPCC and X-CT test and 3D reconstruction technology were used to indicate the failure process of UHPCC under impact loading.Results show that UHPCC with 1% straight smooth fiber and 2% end hook fiber reinforcements demonstrated the best static and dynamic mechanical properties.When the hybrid steel fiber reinforcements are added in the concrete,it may need more impact energy to break the matrix and to pull out the fiber reinforcements,thus,the mixture with hybrid steel fiber reinforcements demonstrates excellent dynamic compressive performance. 展开更多
关键词 ultra-high performance cement-based composite dynamic compression behavior hybrid fiber reinforcements split Hopkinson pressure bar
下载PDF
DYNAMIC RECOVERY AND DYNAMIC RECRYSTALLIZATION OF 7005 ALUMINIUM ALLOY DURING HOT COMPRESSION 被引量:33
13
作者 J. Shen S. S. Xie and J. H. tang (General Research Institute for Non - ferrous Metals,Beijing 100088, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第1期379-386,共8页
Dynamic recovery and dynamic recrystallizatin behaviors of AA7005 aluminium alloy (Al - Zn - Mg) during hot compression are investigated by isothermal compression testing.The interdependence of flow stress,stress, s... Dynamic recovery and dynamic recrystallizatin behaviors of AA7005 aluminium alloy (Al - Zn - Mg) during hot compression are investigated by isothermal compression testing.The interdependence of flow stress,stress, strain rate,true strain and deformation temperature for the alloy is analyzed by introduc- ing Zener-Hollomon parameter. A steady - state flow of the 7005 alloy is confirmed to be a thermal- ly activated process.which is governed by rate-controlling mechanisms of dislocations.A hyperbolic sine relationship can satisfactorily correlate temperature, strain rate with flow stress through an Arrhe- nius term that involves thermal activation parameters. The dynamic recovery mechanisms of the alloy are discussed.Cross- slip of jogged screw dislocations is the main dynamic recovery mechanism over the deformation temperatures and strain rates.Subgrains are highly developed in the originally elongat- ed grains.The size of the subgrain increases with decrease of the natural logarithm of Zener- Hol - lomon parameter.Local dynamic recrystallization is operative when the alloy is deformed at temperature of 500℃ and strain rate of 0. 001s - 1. 展开更多
关键词 compression flow stress dynamic recovery dynamic recrystallization restoration mechanism
下载PDF
A real-time algorithm for broadband highdynamic seismic data compression
14
作者 李沙白 刘启元 沈立人 《Acta Seismologica Sinica(English Edition)》 CSCD 1994年第1期149-158,共10页
A new real-time algorithm of data compression, including the segment-normalized logical compression and socalled 'one taken from two samples',is presented for broadband high dynamic seismic recordings. This al... A new real-time algorithm of data compression, including the segment-normalized logical compression and socalled 'one taken from two samples',is presented for broadband high dynamic seismic recordings. This algorithm was tested by numerical simulation and data observed. Its results demonstrate that total errors in recovery data are less than 1% of original data in time domain,0.5% in frequency domain, when using these two methods together.Its compression ratio is greater than 3.The data compression softwares based on the algorithm have been used in the GDS-1000 portable broadband digital seismograph. 展开更多
关键词 broadband high dynamic data compression
下载PDF
The Application of Dynamic Shock Mechanics Test in Engineering Blasting
15
作者 Lin Cheng Junfeng Liu 《Journal of World Architecture》 2020年第4期13-15,共3页
With the continuous advancement of China’s infrastructure construction to the west,according to the geographic situation in the southwest region,such as mountainous areas and complex terrain,the road construction pro... With the continuous advancement of China’s infrastructure construction to the west,according to the geographic situation in the southwest region,such as mountainous areas and complex terrain,the road construction process is inevitably accompanied by earth and rock blasting.To improve the quality and safety of the project,this paper addresses the problems of land and rock blasting faced in the construction of mountain road projects,taking the research of rock dynamic mechanics test as the starting point,and using a combination of theoretical analysis and experimental research methods.The specific research content includes the following parts:dynamic impact compression test(SHPB),dynamic splitting tensile test,and stress-strain curve analysis of the test results,which provides the theoretical basis and numerical parameters for the numerical simulation of future engineering blasting. 展开更多
关键词 Earth and stone blasting dynamic impact compression test(SHPB) dynamic splitting tensile test Stress-strain curve analysis
下载PDF
Water‑immersion softening mechanism of coal rock mass based on split Hopkinson pressure bar experiment 被引量:1
16
作者 Zhiyuan Liu Gang Wang +4 位作者 Jinzhou Li Huaixing Li Haifeng Zhao Hongwei Shi Jianli Lan 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第4期122-134,共13页
The coal mining process is afected by various water sources such as groundwater and coal seam water injection.Understanding the dynamic mechanical parameters of water-immersed coal is helpful for coalmine safe product... The coal mining process is afected by various water sources such as groundwater and coal seam water injection.Understanding the dynamic mechanical parameters of water-immersed coal is helpful for coalmine safe production.The impact compression tests were performed on coal with diferent moisture contents by using theϕ50 mm Split Hopkinson Pressure Bar(SHPB)experimental system,and the dynamic characteristics and energy loss laws of water-immersed coal with diferent compositions and water contents were analyzed.Through analysis and discussion,it is found that:(1)When the moisture content of the coal sample is 0%,30%,60%,the stress,strain rate and energy frst increase and then decrease with time.(2)When the moisture content of the coal sample increases from 30%to 60%,the stress“plateau”of the coal sample becomes more obvious,resulting in an increase in the compressive stress stage and a decrease in the expansion stress stage.(3)The increase of moisture content of the coal sample will afect its impact deformation and failure mode.When the moisture content is 60%,the incident rod end and the transmission rod end of the coal sample will have obvious compression failure,and the middle part of the coal sample will also experience expansion and deformation.(4)The coal composition ratio suitable for the coal immersion softening impact experiment is optimized. 展开更多
关键词 Coal immersion softening dynamic compressive response Split Hopkinson pressure bar Softening mechanism model
下载PDF
Compressive properties of a novel slurry-infiltrated fiber concrete reinforced with arc-shaped steel fibers
17
作者 Hedong LI Yabiao LI +3 位作者 Yunfeng PAN P.L.NG Christopher K.Y.LEUNG Xin ZHAO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2023年第6期543-556,共14页
Slurry-infiltrated fiber concrete(SIFCON)is a sort of strain hardening cement-based composite material,typically made with 5%–20%steel fibers.This study focused on a novel type of SIFCON in which hooked-end steel fib... Slurry-infiltrated fiber concrete(SIFCON)is a sort of strain hardening cement-based composite material,typically made with 5%–20%steel fibers.This study focused on a novel type of SIFCON in which hooked-end steel fibers were replaced by arc-shaped steel fibers.The quasi-static compressive properties of the SIFCON were first measured.Test results suggested that using arc-shaped steel fibers in lieu of hooked-end steel fibers increased the quasi-static compressive strength by 47.1%and the strain at peak stress by 56.3%.We attribute these improvements to new crack-resisting mechanisms,namely“fiber crosslock”,“dual bridging”,and“confinement loops”,when the arc-shaped steel fibers are introduced into SIFCON.As high impact resistance is a special property of SIFCON that is of practical significance,the dynamic compressive properties of arc-shaped steel fiber SIFCON were studied by using an 80-mm-diameter split Hopkinson pressure bar(SHPB).The results showed that the dynamic compressive strength,dynamic increase factor(DIF),and dynamic toughness of SIFCON all increased with the strain rate.The SIFCON incorporating arc-shaped steel fibers proved to have significant advantages in structural applications requiring high impact resistance. 展开更多
关键词 Slurry-infiltrated fiber concrete(SIFCON) Arc-shaped steel fiber Quasi-static compressive properties Spilt Hopkinson pressure bar(SHPB) dynamic compressive properties
原文传递
The modified temperature term on Johnson-Cook constitutive model of AZ31 magnesium alloy with {0002} texture 被引量:8
18
作者 Feng Zhang Zheng Liu +5 位作者 Yue Wang Pingli Mao Xinwen Kuang Zhenglai Zhang Yingdong Ju Xiaozhong Xu 《Journal of Magnesium and Alloys》 SCIE 2020年第1期172-183,共12页
The dynamic compression experiments with Split-Hopkinson Pressure Bar(SHPB)were performed on AZ31 magnesium alloy rolled sheet specimens in the normal direction(AZ31-ND)with{0002}texture at the temperature of 293-523 ... The dynamic compression experiments with Split-Hopkinson Pressure Bar(SHPB)were performed on AZ31 magnesium alloy rolled sheet specimens in the normal direction(AZ31-ND)with{0002}texture at the temperature of 293-523 K and the strain rate of 0.001-2200 s^−1.The temperature term in Johnson-Cook(JC)constitutive model had been reasonably modified.This advantage made constitutive model promising for decribing the dynamic deformation behavior of AZ31-ND with{0002}texture more accurately.The obtained true stress-true plastic strain curves agreed well with the measured results in a wide range of strain rates and temperatures.The thermal softeninging,strain and strain rate hardening effect on the AZ31-ND with{0002}texture were discussed.The adiabatic shear band(ASB)of AZ31-ND with{0002}texture hat shaped specimen was successfully predicted by combining modified JC constitutive model and numerical simulation,which was also validated by Electron Back-Scattered Diffraction(EBSD)map under the same boundary condition. 展开更多
关键词 Modified Johnson Cook constitutive model AZ31-ND with{0002}texture dynamic compression Numerical simulation Adiabatic shear band
下载PDF
Investigation on the plastic work-heat conversion coefficient of 7075-T651 aluminum alloy during an impact process based on infrared temperature measurement technology 被引量:3
19
作者 Tong Zhang Ze-Rong Guo +1 位作者 Fu-Ping Yuan Hu-Sheng Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第2期327-333,共7页
The plastic work-heat conversion coefficient is one key parameter for studying the work-heat conversion under dynamic deformation of materials. To explore this coefficient of 7075-T651 aluminum alloy under dynamic com... The plastic work-heat conversion coefficient is one key parameter for studying the work-heat conversion under dynamic deformation of materials. To explore this coefficient of 7075-T651 aluminum alloy under dynamic compression, dynamic compression experiments using the Hopkinson bar under four groups of strain rates were conducted, and the temperature signals were measured by constructing a transient infrared temperature measurement system. According to stress versus strain data as well as the corresponding temperature data obtained through the experiments, the influences of the strain and the strain rate on the coefficient of plastic work converted to heat were analyzed.The experimental results show that the coefficient of plastic work converted to heat of 7075-T651 aluminum alloy is not a constant at the range of 0.85–1 and is closely related to the strain and the strain rate. The change of internal structure of material under high strain rate reduces its energy storage capacity, and makes almost all plastic work convert into heat. 展开更多
关键词 Plastic work-heat conversion coefficient Infrared temperature measurement dynamic compression 7075-T651 Aluminum alloy
下载PDF
COMPRESSIBLE VIRTUAL WINDOW ALGORITHM IN PICKING PROCESS CONTROL OF AUTOMATED SORTING SYSTEM 被引量:15
20
作者 WU Yaohua ZHANG Yigong WU Yingying 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第3期41-45,共5页
Compared to fixed virtual window algorithm (FVWA), the dynamic virtual window algorithm (DVWA) determines the length of each virtual container according to the sizes of goods of each order, which saves space of vi... Compared to fixed virtual window algorithm (FVWA), the dynamic virtual window algorithm (DVWA) determines the length of each virtual container according to the sizes of goods of each order, which saves space of virtual containers and improves the picking efficiency. However, the interval of consecutive goods caused by dispensers on conveyor can not be eliminated by DVWA, which limits a further improvement of picking efficiency. In order to solve this problem, a compressible virtual window algorithm (CVWA) is presented. It not only inherits the merit of DVWA but also compresses the length of virtual containers without congestion of order accumulation by advancing the beginning time of order picking and reasonably coordinating the pace of order accumulation. The simulation result proves that the picking efficiency of automated sorting system is greatly improved by CVWA. 展开更多
关键词 Virtual window algorithm dynamics Compressibility Picking efficiency
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部