The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system perf...The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system performance and control cost are defined by H2 or H∞ norms. During this optimization process, the weights are varying with the increasing generation instead of fixed values. The proposed strategy together with the linear matrix inequality (LMI) or the Riccati controller design method can find a series of uniformly distributed nondominated solutions in a single run. Therefore, this method can greatly reduce the computation intensity of the integrated optimization problem compared with the weight-based single objective genetic algorithm. Active automotive suspension is adopted as an example to illustrate the effectiveness of the proposed method.展开更多
This work investigates one immune optimization approach for dynamic constrained multi-objective multimodal optimization in terms of biological immune inspirations and the concept of constraint dominance. Such approach...This work investigates one immune optimization approach for dynamic constrained multi-objective multimodal optimization in terms of biological immune inspirations and the concept of constraint dominance. Such approach includes mainly three functional modules, environmental detection, population initialization and immune evolution. The first, inspired by the function of immune surveillance, is designed to detect the change of such kind of problem and to decide the type of a new environment;the second generates an initial population for the current environment, relying upon the result of detection;the last evolves two sub-populations along multiple directions and searches those excellent and diverse candidates. Experimental results show that the proposed approach can adaptively track the environmental change and effectively find the global Pareto-optimal front in each environment.展开更多
Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is pro...Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is proposed that takes advantage of a few parameters of bare-bones algorithm. To avoid premature convergence,Gaussian mutation is introduced; and an adaptive sampling distribution strategy is also used to improve the exploratory capability. Moreover, a circular crowded sorting approach is adopted to improve the uniformity of the population distribution.Finally, by combining the algorithm with control vector parameterization,an approach is proposed to solve the dynamic optimization problems of chemical processes. It is proved that the new algorithm performs better compared with other classic multiobjective optimization algorithms through the results of solving three dynamic optimization problems.展开更多
Electric vehicle(EV)is an ideal solution to resolve the carbon emission issue and the fossil fuels scarcity problem in the future.However,a large number of EVs will be concentrated on charging during the valley hours ...Electric vehicle(EV)is an ideal solution to resolve the carbon emission issue and the fossil fuels scarcity problem in the future.However,a large number of EVs will be concentrated on charging during the valley hours leading to new load peaks under the guidance of static time-of-use tariff.Therefore,this paper proposes a dynamic time-of-use tariff mechanism,which redefines the peak and valley time periods according to the predicted loads using the fuzzy C-mean(FCM)clustering algorithm,and then dynamically adjusts the peak and valley tariffs according to the actual load of each time period.Based on the proposed tariff mechanism,an EV charging optimization model with the lowest cost to the users and the lowest variance of the grid-side load as the objective function is established.Then,a weight selection principle with an equal loss rate of the two objectives is proposed to transform the multi-objective optimization problem into a single-objective optimization problem.Finally,the EV charging load optimization model under three tariff strategies is set up and solved with the mathematical solver GROUBI.The results show that the EV charging load optimization strategy based on the dynamic time-of-use tariff can better balance the benefits between charging stations and users under different numbers and proportions of EVs connected to the grid,and can effectively reduce the grid load variance and improve the grid load curve.展开更多
Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to e...Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to enhance load capacity,equal attention should be paid to the dynamic response characteristics of cobot during the design process to make the cobot more flexible.In this paper,a new method for designing the drive train parameters of cobot is proposed.Firstly,based on the analysis of factors influencing the load capacity and dynamic response characteristics,design criteria for both aspects are established for cobot with all optimization design criteria normalized within the design domain.Secondly,with the cobot in the horizontal pose,the motor design scheme is discretized and it takes the joint motor diameter and gearbox speed ratio as optimization design variables.Finally,all the discrete values of the optimization objectives are obtained through the enumeration method and the Pareto front is used to select the optimal solution through multi-objective optimization.Base on the cobot design method proposed in this paper,a six-axis cobot is designed and compared with the commercial cobot.The result shows that the load capacity of the designed cobot in this paper reaches 8.4 kg,surpassing the 5 kg load capacity commercial cobot which is used as a benchmark.The minimum resonance frequency of the joints is 42.70 Hz.展开更多
<div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics ...<div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics model of the freight train operation process is established based on the safety and the freight train dynamics model in the process of its operation. The algorithm of combining elite competition strategy with multi-objective particle swarm optimization technology is introduced, and the winning particles are obtained through the competition between two elite particles to guide the update of other particles, so as to balance the convergence and distribution of multi-objective particle swarm optimization. The performance comparison experimental results verify the superiority of the proposed algorithm. The simulation experiments of the actual line verify the feasibility of the model and the effectiveness of the proposed algorithm. </div>展开更多
A Mobile Ad hoc Network(MANET)is a group of low-power con-sumption of wireless mobile nodes that configure a wireless network without the assistance of any existing infrastructure/centralized organization.The primary a...A Mobile Ad hoc Network(MANET)is a group of low-power con-sumption of wireless mobile nodes that configure a wireless network without the assistance of any existing infrastructure/centralized organization.The primary aim of MANETs is to extendflexibility into the self-directed,mobile,and wireless domain,in which a cluster of autonomous nodes forms a MANET routing system.An Intrusion Detection System(IDS)is a tool that examines a network for mal-icious behavior/policy violations.A network monitoring system is often used to report/gather any suspicious attacks/violations.An IDS is a software program or hardware system that monitors network/security traffic for malicious attacks,sending out alerts whenever it detects malicious nodes.The impact of Dynamic Source Routing(DSR)in MANETs challenging blackhole attack is investigated in this research article.The Cluster Trust Adaptive Acknowledgement(CTAA)method is used to identify unauthorised and malfunctioning nodes in a MANET environment.MANET system is active and provides successful delivery of a data packet,which implements Kalman Filters(KF)to anticipate node trustworthiness.Furthermore,KF is used to eliminate synchronisation errors that arise during the sending and receiving data.In order to provide an energy-efficient solution and to minimize network traffic,route optimization in MANET by using Multi-Objective Particle Swarm Optimization(MOPSO)technique to determine the optimal num-ber of clustered MANET along with energy dissipation in nodes.According to the researchfindings,the proposed CTAA-MPSO achieves a Packet Delivery Ratio(PDR)of 3.3%.In MANET,the PDR of CTAA-MPSO improves CTAA-PSO by 3.5%at 30%malware.展开更多
This paper introduces a parallel search system for dynamic multi-objective traveling salesman problem. We design a multi-objective TSP in a stochastic dynamic environment. This dynamic setting of the problem is very u...This paper introduces a parallel search system for dynamic multi-objective traveling salesman problem. We design a multi-objective TSP in a stochastic dynamic environment. This dynamic setting of the problem is very useful for routing in ad-hoc networks. The proposed search system first uses parallel processors to identify the extreme solutions of the search space for each ofk objectives individually at the same time. These solutions are merged into the so-called hit-frequency matrix E. The solutions in E are then searched by parallel processors and evaluated for dominance relationship. The search system is implemented in two different ways master-worker architecture and pipeline architecture.展开更多
The constrained multi-objective multi-variable optimization of fans usually needs a great deal of computational fluid dynamics(CFD)calculations and is time-consuming.In this study,a new multi-model ensemble optimizati...The constrained multi-objective multi-variable optimization of fans usually needs a great deal of computational fluid dynamics(CFD)calculations and is time-consuming.In this study,a new multi-model ensemble optimization algorithm is proposed to tackle such an expensive optimization problem.The multi-variable and multi-objective optimization are conducted with a new flexible multi-objective infill criterion.In addition,the search direction is determined by the multi-model ensemble assisted evolutionary algorithm and the feature extraction by the principal component analysis is used to reduce the dimension of optimization variables.First,the proposed algorithm and other two optimization algorithms which prevail in fan optimizations were compared by using test functions.With the same number of objective function evaluations,the proposed algorithm shows a fast convergency rate on finding the optimal objective function values.Then,this algorithm was used to optimize the rotor and stator blades of a large axial fan,with the efficiencies as the objectives at three flow rates,the high,the design and the low flow rate.Forty-two variables were included in the optimization process.The results show that compared with the prototype fan,the total pressure efficiencies of the optimized fan at the high,the design and the low flow rate were increased by 3.35%,3.07%and 2.89%,respectively,after CFD simulations for 500 fan candidates with the constraint for the design pressure.The optimization results validate the effectiveness and feasibility of the proposed algorithm.展开更多
A design and optimization approach of dynamic and control performance for a two-DOF planar manipulator was proposed.After the kinematic and dynamic analysis,several advantages of the mechanism were illustrated,which m...A design and optimization approach of dynamic and control performance for a two-DOF planar manipulator was proposed.After the kinematic and dynamic analysis,several advantages of the mechanism were illustrated,which made it possible to obtain good dynamic and control performances just through mechanism optimization.Based on the idea of design for control(DFC),a novel kind of multi-objective optimization model was proposed.There were three optimization objectives:the index of inertia,the index describing the dynamic coupling effects and the global condition number.Other indexes to characterize the designing requirements such as the velocity of end-effector,the workspace size,and the first mode natural frequency were regarded as the constraints.The cross-section area and length of the linkages were chosen as the design variables.NSGA-II algorithm was introduced to solve this complex multi-objective optimization problem.Additional criteria from engineering experience were incorporated into the selecting of final parameters among the obtained Pareto solution sets.Finally,experiments were performed to validate the linear dynamic structure and control performances of the optimized mechanisms.A new expression for measuring the dynamic coupling degree with clear physical meaning was proposed.The results show that the optimized mechanism has an approximate decoupled dynamics structure,and each active joint can be regarded as a linear SISO system.The control performances of the linear and nonlinear controllers were also compared.It can be concluded that the optimized mechanism can achieve good control performance only using a linear controller.展开更多
Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has so...Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has some shortcoming s, in this paper, we proposed a new method using tree structure to express the relationship of solutions. Experiments prove that the method can reach the Pare-to front, retain the diversity of the population, and use less time.展开更多
Paths planning of Unmanned Aerial Vehicles(UAVs)in a dynamic environment is considered a challenging task in autonomous flight control design.In this work,an efficient method based on a Multi-Objective MultiVerse Opti...Paths planning of Unmanned Aerial Vehicles(UAVs)in a dynamic environment is considered a challenging task in autonomous flight control design.In this work,an efficient method based on a Multi-Objective MultiVerse Optimization(MOMVO)algorithm is proposed and successfully applied to solve the path planning problem of quadrotors with moving obstacles.Such a path planning task is formulated as a multicriteria optimization problem under operational constraints.The proposed MOMVO-based planning approach aims to lead the drone to traverse the shortest path from the starting point and the target without collision with moving obstacles.The vehicle moves to the next position from its current one such that the line joining minimizes the total path length and allows aligning its direction towards the goal.To choose the best compromise solution among all the non-dominated Pareto ones obtained for compromise objectives,the modified Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)is investigated.A set of homologous metaheuristics such as Multiobjective Salp Swarm Algorithm(MSSA),Multi-Objective Grey Wolf Optimizer(MOGWO),Multi-Objective Particle Swarm Optimization(MOPSO),and Non-Dominated Genetic Algorithm II(NSGAII)is used as a basis for the performance comparison.Demonstrative results and statistical analyses show the superiority and effectiveness of the proposed MOMVO-based planning method.The obtained results are satisfactory and encouraging for future practical implementation of the path planning strategy.展开更多
We suggest a method of multi-objective optimization based on approximation model for dynamic umbilical installation. The optimization aims to find out the most cost effective size, quantity and location of buoyancy mo...We suggest a method of multi-objective optimization based on approximation model for dynamic umbilical installation. The optimization aims to find out the most cost effective size, quantity and location of buoyancy modules for umbilical installation while maintaining structural safety. The approximation model is constructed by the design of experiment (DOE) sampling and is utilized to solve the problem of time-consuming analyses. The non-linear dynamic analyses considering environmental loadings are executed on these sample points from DOE. Non-dominated Sorting Genetic Algorithm (NSGA-II) is employed to obtain the Pareto solution set through an evolutionary optimization process. Intuitionist fuzzy set theory is applied for selecting the best compromise solution from Pareto set. The optimization results indicate this optimization strategy with approximation model and multiple attribute decision-making method is valid, and provide the optimal deployment method for deepwater dynamic umbilical buoyancy modules.展开更多
Conducting reasonable weapon-target assignment( WTA) with near real time can bring the maximum awards with minimum costs which are especially significant in the modern war. A framework of dynamic WTA( DWTA) model base...Conducting reasonable weapon-target assignment( WTA) with near real time can bring the maximum awards with minimum costs which are especially significant in the modern war. A framework of dynamic WTA( DWTA) model based on a series of staged static WTA( SWTA) models is established where dynamic factors including time window of target and time window of weapon are considered in the staged SWTA model. Then,a hybrid algorithm for the staged SWTA named Decomposition-Based Dynamic Weapon-target Assignment( DDWTA) is proposed which is based on the framework of multi-objective evolutionary algorithm based on decomposition( MOEA / D) with two major improvements: one is the coding based on constraint of resource to generate the feasible solutions, and the other is the tabu search strategy to speed up the convergence.Comparative experiments prove that the proposed algorithm is capable of obtaining a well-converged and well diversified set of solutions on a problem instance and meets the time demand in the battlefield environment.展开更多
Many isolation approaches, such as zoning search, have been proposed to preserve the diversity in the decision space of multimodal multi-objective optimization(MMO). However, these approaches allocate the same computi...Many isolation approaches, such as zoning search, have been proposed to preserve the diversity in the decision space of multimodal multi-objective optimization(MMO). However, these approaches allocate the same computing resources for subspaces with different difficulties and evolution states. In order to solve this issue, this paper proposes a dynamic resource allocation strategy(DRAS)with reinforcement learning for multimodal multi-objective optimization problems(MMOPs). In DRAS, relative contribution and improvement are utilized to define the aptitude of subspaces, which can capture the potentials of subspaces accurately. Moreover, the reinforcement learning method is used to dynamically allocate computing resources for each subspace. In addition, the proposed DRAS is applied to zoning searches. Experimental results demonstrate that DRAS can effectively assist zoning search in finding more and better distributed equivalent Pareto optimal solutions in the decision space.展开更多
The nonlinear dynamic modeling by combining the equivalent linear mechanics with the multi-objective optimization algorithm is proposed to describe the nonlinear behaviors of the joint interfaces.The joint interfaces ...The nonlinear dynamic modeling by combining the equivalent linear mechanics with the multi-objective optimization algorithm is proposed to describe the nonlinear behaviors of the joint interfaces.The joint interfaces are simplified as the equivalent virtual material or linear spring damper element.The genetic algorithm for multi-objective optimization is then used to identify the mechanical properties of the equivalent joint by minimizing the error between the simulated dynamic characteristics and the experimental results,including the modal frequencies of the bolted joint beam and the frequency response functions(FRFs)of the rubber isolation system.The FRFs are divided into several subsections with frequency-varied dynamic properties of the joint to consider the nonlinear dynamic behaviors,and the effects of subsection number and excitation amplitudes on the FRFs are also investigated.The results show that the simulated dynamic characteristics of modal frequencies and FRFs agree well with the experimental results.With the increase in the subsection number,the simulated FRFs agree better with the experimental results,indicating a good performance of modeling the nonlinear dynamic behaviors of the joint interfaces forced by different excitation amplitudes.Larger excitation amplitudes will decrease the joint stiffness.展开更多
In lots of data based prediction or modeling applications,uncertainties and/or noises in the observed data cannot be avoided.In such cases,it is more preferable and reasonable to provide linguistic(fuzzy)predicted res...In lots of data based prediction or modeling applications,uncertainties and/or noises in the observed data cannot be avoided.In such cases,it is more preferable and reasonable to provide linguistic(fuzzy)predicted results described by fuzzy memberships or fuzzy sets instead of the crisp estimates depicted by numbers.Linguistic dynamic system(LDS)provides a powerful tool for yielding linguistic(fuzzy)results.However,it is still difficult to construct LDS models from observed data.To solve this issue,this paper first presents a simplified LDS whose inputoutput mapping can be determined by closed-form formulas.Then,a hybrid learning method is proposed to construct the data-driven LDS model.The proposed hybrid learning method firstly generates fuzzy rules by the subtractive clustering method,then carries out further optimization of centers of the consequent triangular fuzzy sets in the fuzzy rules,and finally adopts multiobjective optimization algorithm to determine the left and right end-points of the consequent triangular fuzzy sets.The proposed approach is successfully applied to three real-world prediction applications which are:prediction of energy consumption of a building,forecasting of the traffic flow,and prediction of the wind speed.Simulation results show that the uncertainties in the data can be effectively captured by the linguistic(fuzzy)estimates.It can also be extended to some other prediction or modeling problems,in which observed data have high levels of uncertainties.展开更多
To improve the operation situation of difficulty and low efficiency in the extraction of fermented grains(FG),a high-load and large-workspace reclaiming robot for ceramic cylinder fermentation is designed,and a reclai...To improve the operation situation of difficulty and low efficiency in the extraction of fermented grains(FG),a high-load and large-workspace reclaiming robot for ceramic cylinder fermentation is designed,and a reclaiming effector is designed according to the operating characteristics.Firstly,the kinematics and singularity of the mechanism are analyzed.A multi-domain polar coordinate search method is proposed to obtain the workspace and the volume of the mechanism.Secondly,the dynamic modeling is completed and the example simulation is carried out.Thirdly,the motion-force transmission index of the mechanism is established.And based on the global transmissibility and the good-transmission workspace,the dimensional synthesis of the driving mechanism is completed by using the performance atlas-based method.Finally,aiming at the regular workspace size,stiffness and loading capacity,the Pareto optimal solution set of the executive mechanism dimension is obtained by using the multi-objective particle swarm optimization(MOPSO)algorithm.This paper can provide a theoretical basis for the optimal design and control of FG reclaiming robot.展开更多
Shared manufacturing is recognized as a new point-to-point manufac-turing mode in the digital era.Shared manufacturing is referred to as a new man-ufacturing mode to realize the dynamic allocation of manufacturing tas...Shared manufacturing is recognized as a new point-to-point manufac-turing mode in the digital era.Shared manufacturing is referred to as a new man-ufacturing mode to realize the dynamic allocation of manufacturing tasks and resources.Compared with the traditional mode,shared manufacturing offers more abundant manufacturing resources and flexible configuration options.This paper proposes a model based on the description of the dynamic allocation of tasks and resources in the shared manufacturing environment,and the characteristics of shared manufacturing resource allocation.The execution of manufacturing tasks,in which candidate manufacturing resources enter or exit at various time nodes,enables the dynamic allocation of manufacturing tasks and resources.Then non-dominated sorting genetic algorithm(NSGA-II)and multi-objective particle swarm optimization(MOPSO)algorithms are designed to solve the model.The optimal parameter settings for the NSGA-II and MOPSO algorithms have been obtained according to the experiments with various population sizes and iteration numbers.In addition,the proposed model’s efficiency,which considers the entries and exits of manufacturing resources in the shared manufacturing environment,is further demonstrated by the overlap between the outputs of the NSGA-II and MOPSO algorithms for optimal resource allocation.展开更多
Dynamic Economic Emission Dispatch(DEED)aims to optimize control over fuel cost and pollution emission,two conflicting objectives,by scheduling the output power of various units at specific times.Although many methods...Dynamic Economic Emission Dispatch(DEED)aims to optimize control over fuel cost and pollution emission,two conflicting objectives,by scheduling the output power of various units at specific times.Although many methods well-performed on the DEED problem,most of them fail to achieve expected results in practice due to a lack of effective trade-off mechanisms between the convergence and diversity of non-dominated optimal dispatching solutions.To address this issue,a new multi-objective solver called Multi-Objective Golden Jackal Optimization(MOGJO)algorithm is proposed to cope with the DEED problem.The proposed algorithm first stores non-dominated optimal solutions found so far into an archive.Then,it chooses the best dispatching solution from the archive as the leader through a selection mechanism designed based on elite selection strategy and Euclidean distance index method.This mechanism can guide the algorithm to search for better dispatching solutions in the direction of reducing fuel costs and pollutant emissions.Moreover,the basic golden jackal optimization algorithm has the drawback of insufficient search,which hinders its ability to effectively discover more Pareto solutions.To this end,a non-linear control parameter based on the cosine function is introduced to enhance global exploration of the dispatching space,thus improving the efficiency of finding the optimal dispatching solutions.The proposed MOGJO is evaluated on the latest CEC benchmark test functions,and its superiority over the state-of-the-art multi-objective optimizers is highlighted by performance indicators.Also,empirical results on 5-unit,10-unit,IEEE 30-bus,and 30-unit systems show that the MOGJO can provide competitive compromise scheduling solutions compared to published DEED methods.Finally,in the analysis of the Pareto dominance relationship and the Euclidean distance index,the optimal dispatching solutions provided by MOGJO are the closest to the ideal solutions for minimizing fuel costs and pollution emissions simultaneously,compared to the latest published DEED solutions.展开更多
文摘The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system performance and control cost are defined by H2 or H∞ norms. During this optimization process, the weights are varying with the increasing generation instead of fixed values. The proposed strategy together with the linear matrix inequality (LMI) or the Riccati controller design method can find a series of uniformly distributed nondominated solutions in a single run. Therefore, this method can greatly reduce the computation intensity of the integrated optimization problem compared with the weight-based single objective genetic algorithm. Active automotive suspension is adopted as an example to illustrate the effectiveness of the proposed method.
文摘This work investigates one immune optimization approach for dynamic constrained multi-objective multimodal optimization in terms of biological immune inspirations and the concept of constraint dominance. Such approach includes mainly three functional modules, environmental detection, population initialization and immune evolution. The first, inspired by the function of immune surveillance, is designed to detect the change of such kind of problem and to decide the type of a new environment;the second generates an initial population for the current environment, relying upon the result of detection;the last evolves two sub-populations along multiple directions and searches those excellent and diverse candidates. Experimental results show that the proposed approach can adaptively track the environmental change and effectively find the global Pareto-optimal front in each environment.
基金National Natural Science Foundations of China(Nos.61222303,21276078)National High-Tech Research and Development Program of China(No.2012AA040307)+1 种基金New Century Excellent Researcher Award Program from Ministry of Education of China(No.NCET10-0885)the Fundamental Research Funds for the Central Universities and Shanghai Leading Academic Discipline Project,China(No.B504)
文摘Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is proposed that takes advantage of a few parameters of bare-bones algorithm. To avoid premature convergence,Gaussian mutation is introduced; and an adaptive sampling distribution strategy is also used to improve the exploratory capability. Moreover, a circular crowded sorting approach is adopted to improve the uniformity of the population distribution.Finally, by combining the algorithm with control vector parameterization,an approach is proposed to solve the dynamic optimization problems of chemical processes. It is proved that the new algorithm performs better compared with other classic multiobjective optimization algorithms through the results of solving three dynamic optimization problems.
基金Key R&D Program of Tianjin,China(No.20YFYSGX00060).
文摘Electric vehicle(EV)is an ideal solution to resolve the carbon emission issue and the fossil fuels scarcity problem in the future.However,a large number of EVs will be concentrated on charging during the valley hours leading to new load peaks under the guidance of static time-of-use tariff.Therefore,this paper proposes a dynamic time-of-use tariff mechanism,which redefines the peak and valley time periods according to the predicted loads using the fuzzy C-mean(FCM)clustering algorithm,and then dynamically adjusts the peak and valley tariffs according to the actual load of each time period.Based on the proposed tariff mechanism,an EV charging optimization model with the lowest cost to the users and the lowest variance of the grid-side load as the objective function is established.Then,a weight selection principle with an equal loss rate of the two objectives is proposed to transform the multi-objective optimization problem into a single-objective optimization problem.Finally,the EV charging load optimization model under three tariff strategies is set up and solved with the mathematical solver GROUBI.The results show that the EV charging load optimization strategy based on the dynamic time-of-use tariff can better balance the benefits between charging stations and users under different numbers and proportions of EVs connected to the grid,and can effectively reduce the grid load variance and improve the grid load curve.
基金Supported by National Key Research and Development Program of China (Grant Nos.2022YFB4703000,2019YFB1309900)。
文摘Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to enhance load capacity,equal attention should be paid to the dynamic response characteristics of cobot during the design process to make the cobot more flexible.In this paper,a new method for designing the drive train parameters of cobot is proposed.Firstly,based on the analysis of factors influencing the load capacity and dynamic response characteristics,design criteria for both aspects are established for cobot with all optimization design criteria normalized within the design domain.Secondly,with the cobot in the horizontal pose,the motor design scheme is discretized and it takes the joint motor diameter and gearbox speed ratio as optimization design variables.Finally,all the discrete values of the optimization objectives are obtained through the enumeration method and the Pareto front is used to select the optimal solution through multi-objective optimization.Base on the cobot design method proposed in this paper,a six-axis cobot is designed and compared with the commercial cobot.The result shows that the load capacity of the designed cobot in this paper reaches 8.4 kg,surpassing the 5 kg load capacity commercial cobot which is used as a benchmark.The minimum resonance frequency of the joints is 42.70 Hz.
文摘<div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics model of the freight train operation process is established based on the safety and the freight train dynamics model in the process of its operation. The algorithm of combining elite competition strategy with multi-objective particle swarm optimization technology is introduced, and the winning particles are obtained through the competition between two elite particles to guide the update of other particles, so as to balance the convergence and distribution of multi-objective particle swarm optimization. The performance comparison experimental results verify the superiority of the proposed algorithm. The simulation experiments of the actual line verify the feasibility of the model and the effectiveness of the proposed algorithm. </div>
文摘A Mobile Ad hoc Network(MANET)is a group of low-power con-sumption of wireless mobile nodes that configure a wireless network without the assistance of any existing infrastructure/centralized organization.The primary aim of MANETs is to extendflexibility into the self-directed,mobile,and wireless domain,in which a cluster of autonomous nodes forms a MANET routing system.An Intrusion Detection System(IDS)is a tool that examines a network for mal-icious behavior/policy violations.A network monitoring system is often used to report/gather any suspicious attacks/violations.An IDS is a software program or hardware system that monitors network/security traffic for malicious attacks,sending out alerts whenever it detects malicious nodes.The impact of Dynamic Source Routing(DSR)in MANETs challenging blackhole attack is investigated in this research article.The Cluster Trust Adaptive Acknowledgement(CTAA)method is used to identify unauthorised and malfunctioning nodes in a MANET environment.MANET system is active and provides successful delivery of a data packet,which implements Kalman Filters(KF)to anticipate node trustworthiness.Furthermore,KF is used to eliminate synchronisation errors that arise during the sending and receiving data.In order to provide an energy-efficient solution and to minimize network traffic,route optimization in MANET by using Multi-Objective Particle Swarm Optimization(MOPSO)technique to determine the optimal num-ber of clustered MANET along with energy dissipation in nodes.According to the researchfindings,the proposed CTAA-MPSO achieves a Packet Delivery Ratio(PDR)of 3.3%.In MANET,the PDR of CTAA-MPSO improves CTAA-PSO by 3.5%at 30%malware.
文摘This paper introduces a parallel search system for dynamic multi-objective traveling salesman problem. We design a multi-objective TSP in a stochastic dynamic environment. This dynamic setting of the problem is very useful for routing in ad-hoc networks. The proposed search system first uses parallel processors to identify the extreme solutions of the search space for each ofk objectives individually at the same time. These solutions are merged into the so-called hit-frequency matrix E. The solutions in E are then searched by parallel processors and evaluated for dominance relationship. The search system is implemented in two different ways master-worker architecture and pipeline architecture.
基金support of National Science and Technology Major Project(2017-11-0007-0021)。
文摘The constrained multi-objective multi-variable optimization of fans usually needs a great deal of computational fluid dynamics(CFD)calculations and is time-consuming.In this study,a new multi-model ensemble optimization algorithm is proposed to tackle such an expensive optimization problem.The multi-variable and multi-objective optimization are conducted with a new flexible multi-objective infill criterion.In addition,the search direction is determined by the multi-model ensemble assisted evolutionary algorithm and the feature extraction by the principal component analysis is used to reduce the dimension of optimization variables.First,the proposed algorithm and other two optimization algorithms which prevail in fan optimizations were compared by using test functions.With the same number of objective function evaluations,the proposed algorithm shows a fast convergency rate on finding the optimal objective function values.Then,this algorithm was used to optimize the rotor and stator blades of a large axial fan,with the efficiencies as the objectives at three flow rates,the high,the design and the low flow rate.Forty-two variables were included in the optimization process.The results show that compared with the prototype fan,the total pressure efficiencies of the optimized fan at the high,the design and the low flow rate were increased by 3.35%,3.07%and 2.89%,respectively,after CFD simulations for 500 fan candidates with the constraint for the design pressure.The optimization results validate the effectiveness and feasibility of the proposed algorithm.
基金Project(2009AA04Z216) supported in part by the National High Technology Research and Development Program of ChinaProject(2009ZX04013-011) supported by the National Science and Technology Major Program of ChinaProject(20092302120068) supported by the Doctoral Program of Higher Education of China
文摘A design and optimization approach of dynamic and control performance for a two-DOF planar manipulator was proposed.After the kinematic and dynamic analysis,several advantages of the mechanism were illustrated,which made it possible to obtain good dynamic and control performances just through mechanism optimization.Based on the idea of design for control(DFC),a novel kind of multi-objective optimization model was proposed.There were three optimization objectives:the index of inertia,the index describing the dynamic coupling effects and the global condition number.Other indexes to characterize the designing requirements such as the velocity of end-effector,the workspace size,and the first mode natural frequency were regarded as the constraints.The cross-section area and length of the linkages were chosen as the design variables.NSGA-II algorithm was introduced to solve this complex multi-objective optimization problem.Additional criteria from engineering experience were incorporated into the selecting of final parameters among the obtained Pareto solution sets.Finally,experiments were performed to validate the linear dynamic structure and control performances of the optimized mechanisms.A new expression for measuring the dynamic coupling degree with clear physical meaning was proposed.The results show that the optimized mechanism has an approximate decoupled dynamics structure,and each active joint can be regarded as a linear SISO system.The control performances of the linear and nonlinear controllers were also compared.It can be concluded that the optimized mechanism can achieve good control performance only using a linear controller.
基金Supported by the National Natural Science Foundation of China(60073043,70071042,60133010)
文摘Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has some shortcoming s, in this paper, we proposed a new method using tree structure to express the relationship of solutions. Experiments prove that the method can reach the Pare-to front, retain the diversity of the population, and use less time.
文摘Paths planning of Unmanned Aerial Vehicles(UAVs)in a dynamic environment is considered a challenging task in autonomous flight control design.In this work,an efficient method based on a Multi-Objective MultiVerse Optimization(MOMVO)algorithm is proposed and successfully applied to solve the path planning problem of quadrotors with moving obstacles.Such a path planning task is formulated as a multicriteria optimization problem under operational constraints.The proposed MOMVO-based planning approach aims to lead the drone to traverse the shortest path from the starting point and the target without collision with moving obstacles.The vehicle moves to the next position from its current one such that the line joining minimizes the total path length and allows aligning its direction towards the goal.To choose the best compromise solution among all the non-dominated Pareto ones obtained for compromise objectives,the modified Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)is investigated.A set of homologous metaheuristics such as Multiobjective Salp Swarm Algorithm(MSSA),Multi-Objective Grey Wolf Optimizer(MOGWO),Multi-Objective Particle Swarm Optimization(MOPSO),and Non-Dominated Genetic Algorithm II(NSGAII)is used as a basis for the performance comparison.Demonstrative results and statistical analyses show the superiority and effectiveness of the proposed MOMVO-based planning method.The obtained results are satisfactory and encouraging for future practical implementation of the path planning strategy.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50739004 and 51009093)
文摘We suggest a method of multi-objective optimization based on approximation model for dynamic umbilical installation. The optimization aims to find out the most cost effective size, quantity and location of buoyancy modules for umbilical installation while maintaining structural safety. The approximation model is constructed by the design of experiment (DOE) sampling and is utilized to solve the problem of time-consuming analyses. The non-linear dynamic analyses considering environmental loadings are executed on these sample points from DOE. Non-dominated Sorting Genetic Algorithm (NSGA-II) is employed to obtain the Pareto solution set through an evolutionary optimization process. Intuitionist fuzzy set theory is applied for selecting the best compromise solution from Pareto set. The optimization results indicate this optimization strategy with approximation model and multiple attribute decision-making method is valid, and provide the optimal deployment method for deepwater dynamic umbilical buoyancy modules.
文摘Conducting reasonable weapon-target assignment( WTA) with near real time can bring the maximum awards with minimum costs which are especially significant in the modern war. A framework of dynamic WTA( DWTA) model based on a series of staged static WTA( SWTA) models is established where dynamic factors including time window of target and time window of weapon are considered in the staged SWTA model. Then,a hybrid algorithm for the staged SWTA named Decomposition-Based Dynamic Weapon-target Assignment( DDWTA) is proposed which is based on the framework of multi-objective evolutionary algorithm based on decomposition( MOEA / D) with two major improvements: one is the coding based on constraint of resource to generate the feasible solutions, and the other is the tabu search strategy to speed up the convergence.Comparative experiments prove that the proposed algorithm is capable of obtaining a well-converged and well diversified set of solutions on a problem instance and meets the time demand in the battlefield environment.
文摘Many isolation approaches, such as zoning search, have been proposed to preserve the diversity in the decision space of multimodal multi-objective optimization(MMO). However, these approaches allocate the same computing resources for subspaces with different difficulties and evolution states. In order to solve this issue, this paper proposes a dynamic resource allocation strategy(DRAS)with reinforcement learning for multimodal multi-objective optimization problems(MMOPs). In DRAS, relative contribution and improvement are utilized to define the aptitude of subspaces, which can capture the potentials of subspaces accurately. Moreover, the reinforcement learning method is used to dynamically allocate computing resources for each subspace. In addition, the proposed DRAS is applied to zoning searches. Experimental results demonstrate that DRAS can effectively assist zoning search in finding more and better distributed equivalent Pareto optimal solutions in the decision space.
基金The work was supported by the Science Challenge Project(Grant No.TZ2018007)The authors also thank the National Natural Science Foundation of China(Grant Nos.11872059,11702279)National Defense Technology Foundation of China(Grant No.JSUS2018212C)for providing the financial support for this project.
文摘The nonlinear dynamic modeling by combining the equivalent linear mechanics with the multi-objective optimization algorithm is proposed to describe the nonlinear behaviors of the joint interfaces.The joint interfaces are simplified as the equivalent virtual material or linear spring damper element.The genetic algorithm for multi-objective optimization is then used to identify the mechanical properties of the equivalent joint by minimizing the error between the simulated dynamic characteristics and the experimental results,including the modal frequencies of the bolted joint beam and the frequency response functions(FRFs)of the rubber isolation system.The FRFs are divided into several subsections with frequency-varied dynamic properties of the joint to consider the nonlinear dynamic behaviors,and the effects of subsection number and excitation amplitudes on the FRFs are also investigated.The results show that the simulated dynamic characteristics of modal frequencies and FRFs agree well with the experimental results.With the increase in the subsection number,the simulated FRFs agree better with the experimental results,indicating a good performance of modeling the nonlinear dynamic behaviors of the joint interfaces forced by different excitation amplitudes.Larger excitation amplitudes will decrease the joint stiffness.
基金supported by the National Natural Science Foundation of China(61473176,61773246)the Natural Science Foundation of Shandong Province for Outstanding Young Talents in Provincial Universities(ZR2015JL021)the Taishan Scholar Project of Shandong Province(TSQN201812092)
文摘In lots of data based prediction or modeling applications,uncertainties and/or noises in the observed data cannot be avoided.In such cases,it is more preferable and reasonable to provide linguistic(fuzzy)predicted results described by fuzzy memberships or fuzzy sets instead of the crisp estimates depicted by numbers.Linguistic dynamic system(LDS)provides a powerful tool for yielding linguistic(fuzzy)results.However,it is still difficult to construct LDS models from observed data.To solve this issue,this paper first presents a simplified LDS whose inputoutput mapping can be determined by closed-form formulas.Then,a hybrid learning method is proposed to construct the data-driven LDS model.The proposed hybrid learning method firstly generates fuzzy rules by the subtractive clustering method,then carries out further optimization of centers of the consequent triangular fuzzy sets in the fuzzy rules,and finally adopts multiobjective optimization algorithm to determine the left and right end-points of the consequent triangular fuzzy sets.The proposed approach is successfully applied to three real-world prediction applications which are:prediction of energy consumption of a building,forecasting of the traffic flow,and prediction of the wind speed.Simulation results show that the uncertainties in the data can be effectively captured by the linguistic(fuzzy)estimates.It can also be extended to some other prediction or modeling problems,in which observed data have high levels of uncertainties.
基金supported by the National Natural Science Foundation of China(No.51905367)。
文摘To improve the operation situation of difficulty and low efficiency in the extraction of fermented grains(FG),a high-load and large-workspace reclaiming robot for ceramic cylinder fermentation is designed,and a reclaiming effector is designed according to the operating characteristics.Firstly,the kinematics and singularity of the mechanism are analyzed.A multi-domain polar coordinate search method is proposed to obtain the workspace and the volume of the mechanism.Secondly,the dynamic modeling is completed and the example simulation is carried out.Thirdly,the motion-force transmission index of the mechanism is established.And based on the global transmissibility and the good-transmission workspace,the dimensional synthesis of the driving mechanism is completed by using the performance atlas-based method.Finally,aiming at the regular workspace size,stiffness and loading capacity,the Pareto optimal solution set of the executive mechanism dimension is obtained by using the multi-objective particle swarm optimization(MOPSO)algorithm.This paper can provide a theoretical basis for the optimal design and control of FG reclaiming robot.
基金This work was supported by the Key Program of Social Science Planning Foundation of Liaoning Province under Grant L21AGL017.
文摘Shared manufacturing is recognized as a new point-to-point manufac-turing mode in the digital era.Shared manufacturing is referred to as a new man-ufacturing mode to realize the dynamic allocation of manufacturing tasks and resources.Compared with the traditional mode,shared manufacturing offers more abundant manufacturing resources and flexible configuration options.This paper proposes a model based on the description of the dynamic allocation of tasks and resources in the shared manufacturing environment,and the characteristics of shared manufacturing resource allocation.The execution of manufacturing tasks,in which candidate manufacturing resources enter or exit at various time nodes,enables the dynamic allocation of manufacturing tasks and resources.Then non-dominated sorting genetic algorithm(NSGA-II)and multi-objective particle swarm optimization(MOPSO)algorithms are designed to solve the model.The optimal parameter settings for the NSGA-II and MOPSO algorithms have been obtained according to the experiments with various population sizes and iteration numbers.In addition,the proposed model’s efficiency,which considers the entries and exits of manufacturing resources in the shared manufacturing environment,is further demonstrated by the overlap between the outputs of the NSGA-II and MOPSO algorithms for optimal resource allocation.
基金supported by the National Natural Science Foundation of China under Grant No.61802328,61972333,and 61771415.
文摘Dynamic Economic Emission Dispatch(DEED)aims to optimize control over fuel cost and pollution emission,two conflicting objectives,by scheduling the output power of various units at specific times.Although many methods well-performed on the DEED problem,most of them fail to achieve expected results in practice due to a lack of effective trade-off mechanisms between the convergence and diversity of non-dominated optimal dispatching solutions.To address this issue,a new multi-objective solver called Multi-Objective Golden Jackal Optimization(MOGJO)algorithm is proposed to cope with the DEED problem.The proposed algorithm first stores non-dominated optimal solutions found so far into an archive.Then,it chooses the best dispatching solution from the archive as the leader through a selection mechanism designed based on elite selection strategy and Euclidean distance index method.This mechanism can guide the algorithm to search for better dispatching solutions in the direction of reducing fuel costs and pollutant emissions.Moreover,the basic golden jackal optimization algorithm has the drawback of insufficient search,which hinders its ability to effectively discover more Pareto solutions.To this end,a non-linear control parameter based on the cosine function is introduced to enhance global exploration of the dispatching space,thus improving the efficiency of finding the optimal dispatching solutions.The proposed MOGJO is evaluated on the latest CEC benchmark test functions,and its superiority over the state-of-the-art multi-objective optimizers is highlighted by performance indicators.Also,empirical results on 5-unit,10-unit,IEEE 30-bus,and 30-unit systems show that the MOGJO can provide competitive compromise scheduling solutions compared to published DEED methods.Finally,in the analysis of the Pareto dominance relationship and the Euclidean distance index,the optimal dispatching solutions provided by MOGJO are the closest to the ideal solutions for minimizing fuel costs and pollution emissions simultaneously,compared to the latest published DEED solutions.