Langevin simulation of the particles multi-passing over the saddle point is proposed to calculate thermal fission rate. Due to finite friction and the corresponding thermal fluctuation, a backstreaming exists in the p...Langevin simulation of the particles multi-passing over the saddle point is proposed to calculate thermal fission rate. Due to finite friction and the corresponding thermal fluctuation, a backstreaming exists in the process of the particle descent from the saddle to the scission. This leads to that the diffusion behind the saddle point has influence upon the stationary flow across the saddle point. A dynamical correction factor, as a ratio of the flows of multi- and first-overpassing the saddle point, is evaluated analytically. The results show that the fission rate calculated by the particles multi-passing over the saddle point is lower than the one calculated by the particle firstly passing over the saddle point, and the former approaches the results at the scission point.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos.10075007 and 10235020
文摘Langevin simulation of the particles multi-passing over the saddle point is proposed to calculate thermal fission rate. Due to finite friction and the corresponding thermal fluctuation, a backstreaming exists in the process of the particle descent from the saddle to the scission. This leads to that the diffusion behind the saddle point has influence upon the stationary flow across the saddle point. A dynamical correction factor, as a ratio of the flows of multi- and first-overpassing the saddle point, is evaluated analytically. The results show that the fission rate calculated by the particles multi-passing over the saddle point is lower than the one calculated by the particle firstly passing over the saddle point, and the former approaches the results at the scission point.