期刊文献+
共找到105篇文章
< 1 2 6 >
每页显示 20 50 100
Plasma induced dynamic coupling of microscopic factors to collaboratively promote EM losses coupling of transition metal dichalcogenide absorbers 被引量:3
1
作者 Jiaming Wen Geng Chen +7 位作者 Shengchong Hui Zijing Li Jijun Yun Xiaomeng Fan Limin Zhang Qian He Xingmin Liu Hongjing Wu 《Advanced Powder Materials》 2024年第3期1-11,共11页
Plasma as the fourth state of matter has attracted great attention for material surface modification,which could induce changes in material microscopic factors,such as defects,phase transitions,crystallinity,and so on... Plasma as the fourth state of matter has attracted great attention for material surface modification,which could induce changes in material microscopic factors,such as defects,phase transitions,crystallinity,and so on.However,the interactions among those microscopic factors and regulation mechanism of macroscopic properties have rarely been investigated.Two-dimensional(2D)transition metal dichalcogenide with tunable structure and phase is one of the most promising electromagnetic wave(EMW)absorbers,which provides a favorable platform for systematically studying the dynamic coupling of its microscopic factors.Herein,we constructed a NaBH_(4) solution-assisted Ar plasma method to modify the 2H-MoS_(2)and 1T-WS_(2)for exploring the regulation mechanism of microscopic factors.For MoS_(2)and WS_(2),NaBH_(4) solution-assisted Ar plasma treatment behaves with different effects on dielectric responses,realizing dynamic coupling of material microscopic factors to collaboratively promote EM losses coupling.Consequently,the MS-D3-0.5(MoS_(2),3 kV voltage,0.5 mol L^(-1)NaBH_(4) solution)displays an optimum effective absorption bandwidth of 8.01 GHz,which is 319.4%more than that of MS-raw sample.This study not only reveals the novel mechanism of plasma induced dynamic coupling of microscopic factors for EMW dissipation,but also presents a new method of plasma-dominated surface modification to optimize the EMW absorption performance. 展开更多
关键词 TMDS Ar plasma Defect Metal single atom dynamic coupling
下载PDF
Vibration control of pedestrian-bridge vertical dynamic coupling interaction based on biodynamic model 被引量:2
2
作者 朱前坤 李宏男 +1 位作者 南娜娜 杜永峰 《Journal of Southeast University(English Edition)》 EI CAS 2017年第2期209-215,共7页
The human-induced vertical vibration serviceability of low-frequency and lightweight footbridges is studied based on the moving mass-spring-damper(MMSD) biodynamic model, and the mass damper(TMD) with different op... The human-induced vertical vibration serviceability of low-frequency and lightweight footbridges is studied based on the moving mass-spring-damper(MMSD) biodynamic model, and the mass damper(TMD) with different optimal model parameters being used to control the vertical vibration.First, the MMSD biodynamic model is employed to simulate the pedestrians, and the time-varying control equations of the vertical dynamic coupling system of the pedestrian-bridgeTMD are established with the consideration of pedestrianbridge dynamic interaction; and the equations are solved by using the Runge-Kutta-Felhberg integral method with variable step size. Secondly, the footbridge dynamic response is calculated under the model of pedestrian-structure dynamic interaction and the model of moving load when the pedestrian pace frequency is consistent with the natural frequency of footbridge. Finally, a comparative study and analysis are made on the control effects of the vertical dynamic coupling system in different optimal models of the TMD. The calculation results show that the pedestrian-bridge dynamic interaction cannot be ignored when the vertical human-induced vibration serviceability of low-frequency and light-weight footbridge is evaluated. The TMD can effectively reduce the vibration under the resonance of pedestrian-bridge, and TMD parameters are recommended for the determination by the Warburton optimization model. 展开更多
关键词 FOOTBRIDGE vibration serviceability biodynamic dynamic coupling system vibration control
下载PDF
The dynamic coupling model and its application of urbanization and eco-environment in Hexi Corridor 被引量:8
3
作者 QIAO Biao FANG Chuanglin 《Journal of Geographical Sciences》 SCIE CSCD 2005年第4期491-499,共9页
This paper, taking Hexi Corridor as an example, analyzes the altemating intimidation and the dynamic evolving relation between urbanization and eco-environment in arid area of West China. We argue that the harmonious ... This paper, taking Hexi Corridor as an example, analyzes the altemating intimidation and the dynamic evolving relation between urbanization and eco-environment in arid area of West China. We argue that the harmonious development system of the urbanization and eco-environment would go through four phases: rudimentary symbiotic phase, harmonious developmental phase, utmost increasing phase and spiral type rising phase. Throughout the four phases, the elements of the system would influence each other, coerce each other, and complete the spiral type rising process from low-grade symbiosis to high-grade harmony together. The study on Hexi Corridor shows that the urbanization level in Hexi Corridor has increased gradually from 1985 to 2003 accompanied with the fluctuations of eco-environment state. The response of eco-environment to urbanization has been evident, but lagged behind the urbanization course. At present, the harmonious development system in Hexi Corridor was in its harmonious developmental phase. However, the coupling degree has increased quickly and approached 90 yet, which is signaling that the system is about to enter the utmost increasing phase, and the ecological crisis will enter the latent period. We have found that the coupling degree can well reflect the interactive coercing and dynamic evolving situation between urbanization and eco-environment in Hexi Corridor. From the temporal change of the coupling degree, it can be concluded that urbanization sometimes needs to pay a certain cost for the damage of the eco-environment in its initial stages, but as the urbanization continues, the state of the eco-environment would be meliorated. 展开更多
关键词 Hexi Corridor URBANIZATION eeo-environment harmonious development dynamic coupling model
下载PDF
Dynamic Couplingand Cooperative Control for Multi-paralleled Doubly Fed Induction Generator Wind Farms during Symmetrical Low Voltage Ride-through in a Weak Grid
4
作者 Lei Guan Jun Yao 《Protection and Control of Modern Power Systems》 SCIE EI 2024年第3期112-125,共14页
In multi-fed grid-connected systems,there are complex dynamic interactions between different pieces of equipment.Particularly in situations of weak-grid faults,the dynamic coupling between equipment becomes more prono... In multi-fed grid-connected systems,there are complex dynamic interactions between different pieces of equipment.Particularly in situations of weak-grid faults,the dynamic coupling between equipment becomes more pronounced.This may cause the system to experience small-signal instability during the fault steady-state.In this paper,multi-paralleled doubly fed induction generator(DFIG)-based wind farms(WFs)are taken as an example to study the dynamic coupling within a multi-fed system during fault steady-state of symmetrical low voltage ride-through(LVRT)in a weak grid.The analysis reveals that the dynamic coupling between WFs will introduce a damping shift to each WF.This inevitably affects the system’s dynamic stability and brings the risk of small-signal instability during fault steady-state in LVRT scenarios.Increasing the distance to fault location and fault severity will exacerbate the dynamic coupling between WFs.Because of the dynamic coupling,adjusting the control state of one WF will affect the stability of the remaining WFs in the system.Hence,a cooperative control strategy for multi-paralleled DFIG WFs is proposed to improve dynamic stability during LVRT.The analysis and the effectiveness of the proposed control strategy are verified by modal analysis and simu-lation. 展开更多
关键词 Doubly fed induction generator(DFIG) wind farms(WFs) dynamic stability low voltage ride through(LVRT) weak grid dynamic coupling
原文传递
Dynamic Coupling between Ryanodine Receptors and its Role in Cacium Release
5
作者 Xin Liang1, Peihong Zhu2, Jun Hu1,3, Xiaofang Hu1 1 School of Life Science and Biotechnology, Shanghai Jiao Tong University, No.800 Dong Chuan Road, Shanghai 200240, China 2 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai,200231, China 3 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O.Box 800-204, Shanghai 201800, China 《生物物理学报》 CAS CSCD 北大核心 2009年第S1期25-25,共1页
The calcium release channels/ryanodine receptors (RyRs) usually form 2-D regular lattice in the endoplasmic/sarcoplasmic reticulum membranes. Several inter-RyR coupling
关键词 RYR CA dynamic coupling between Ryanodine Receptors and its Role in Cacium Release
原文传递
Experimental study and numerical simulation of the impact of under-sleeper pads on the dynamic and static mechanical behavior of heavy-haul railway ballast track
6
作者 Yihao Chi Hong Xiao +2 位作者 Yang Wang Zhihai Zhang Mahantesh M.Nadakatti 《Railway Engineering Science》 EI 2024年第3期384-400,共17页
Laying the under-sleeper pad(USP)is one of the effective measures commonly used to delay ballast degradation and reduce maintenance workload.To explore the impact of application of the USP on the dynamic and static me... Laying the under-sleeper pad(USP)is one of the effective measures commonly used to delay ballast degradation and reduce maintenance workload.To explore the impact of application of the USP on the dynamic and static mechanical behavior of the ballast track in the heavy-haul railway system,numerical simulation models of the ballast bed with USP and without USP are presented in this paper by using the discrete element method(DEM)-multi-flexible body dynamic(MFBD)coupling analysis method.The ballast bed support stiffness test and dynamic displacement tests were carried out on the actual operation of a heavy-haul railway line to verify the validity of the models.The results show that using the USP results in a 43.01%reduction in the ballast bed support stiffness and achieves a more uniform distribution of track loads on the sleepers.It effectively reduces the load borne by the sleeper directly under the wheel load,with a 7.89%reduction in the pressure on the sleeper.Furthermore,the laying of the USP changes the lateral resistance sharing ratio of the ballast bed,significantly reducing the stress level of the ballast bed under train loads,with an average stress reduction of 42.19 kPa.It also reduces the plastic displacement of ballast particles and lowers the peak value of rotational angular velocity by about 50%to 70%,which is conducive to slowing down ballast bed settlement deformation and reducing maintenance costs.In summary,laying the USP has a potential value in enhancing the stability and extending the lifespan of the ballast bed in heavy-haul railway systems. 展开更多
关键词 Heavy-haul railway Under-sleeper pad Discrete element method Multi-flexible body dynamic coupling analysis Mechanical behavior Quality state
下载PDF
Roll System and Stock's Multi-parameter Coupling Dynamic Modeling Based on the Shape Control of Steel Strip 被引量:3
7
作者 Yang ZHANG Yan PENG +1 位作者 Jianliang SUN Yong ZANG 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第3期614-624,共11页
The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformatio... The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformation, it is necessary to consider the transverse periodic movement of stock in the rolling deformation area which is caused by the flexural deformation movement of roll system simul- taneously. Therefore, the displacement field of roll system and flow of metal in the deformation area is described by kinematic analysis in the dynamic system. Through intro- ducing the lateral displacement function of metal in the deformation area, the dynamic variation of per unit width rolling force can be determined at the same time. Then the coupling law caused by the co-effect of rigid movement and flexural deformation of the system structural elements is determined. Furthermore, a multi-parameter coupling dynamic model of the roll system and stock is established by the principle of virtual work. More explicitly, the cou- pled motion modal analysis was made for the roll system. Meanwhile, the analytical solutions for the flexural defor- mation movement's mode shape functions of rolls are discussed. In addition, the dynamic characteristic of the lateral flow of metal in the rolling deformation area has been analyzed at the same time. The establishment ofdynamic lateral displacement function of metal in the deformation area makes the foundation for analyzing the coupling law between roll system and rolling deformation area, and provides a theoretical basis for the realization of the dynamic shape control of steel strip. 展开更多
关键词 Roll system Rolling deformation area coupling dynamic model Mode shape function - Lateraldisplacement function
下载PDF
Evaluating the dynamical coupling between spatiotemporally chaotic signals via an information theory approach
8
作者 肖方红 郭少华 胡元太 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第7期1460-1463,共4页
An information-theoretic measure is introduced for evaluating the dynamical coupling of spatiotemporally chaotic signals produced by extended systems. The measure of the one-way coupled map lattices and the one-dimens... An information-theoretic measure is introduced for evaluating the dynamical coupling of spatiotemporally chaotic signals produced by extended systems. The measure of the one-way coupled map lattices and the one-dimensional, homogeneous, diffusively coupled map lattices is computed with the symbolic analysis method. The numerical results show that the information measure is applicable to determining the dynamical coupling between two directly coupled or indirectly coupled chaotic signals. 展开更多
关键词 spatiotemporal chaos information entropy dynamical coupling coupled map lattices
下载PDF
Uncertainty quantification of mechanism motion based on coupled mechanism—motor dynamic model for ammunition delivery system 被引量:1
9
作者 Jinsong Tang Linfang Qian +3 位作者 Longmiao Chen Guangsong Chen Mingming Wang Guangzu Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期125-133,共9页
In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to pro... In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to propose a novel mechanism-motor coupling dynamic modeling method,in which the relationship between mechanism motion and motor rotation is established according to the geometric coordination of the system.The advantages of this include establishing intuitive coupling between the mechanism and motor,facilitating the discussion for the influence of both mechanical and electrical parameters on the mechanism,and enabling dynamic simulation with controller to take the randomness of the electric load into account.Dynamic simulation considering feedback control of ammunition delivery system is carried out,and the feasibility of the model is verified experimentally.Based on probability density evolution theory,we comprehensively discuss the effects of system parameters on mechanism motion from the perspective of uncertainty quantization.Our work can not only provide guidance for engineering design of ammunition delivery mechanism,but also provide theoretical support for modeling and uncertainty quantification research of mechatronics system. 展开更多
关键词 Ammunition delivery system Electromechanical coupling dynamics Uncertainty quantification Generalized probability density evolution
下载PDF
THE COUPLING DYNAMICAL MODELING THEORY OF FLEXIBLE MULTIBODY SYSTEM
10
作者 Jiang, LZ Hong, JZ 《Acta Mechanica Solida Sinica》 SCIE EI 1999年第4期365-372,共8页
Based on the deformation theory of elastic beams, the coupling effect between the coupling displacements of a point on the middle line of beam and large overall motion is presented. The 'coupling matrix library... Based on the deformation theory of elastic beams, the coupling effect between the coupling displacements of a point on the middle line of beam and large overall motion is presented. The 'coupling matrix library' and Jourdain's variation principle and single direction recursive formulation method are used to establish the general coupling dynamical equations of flexible multibody system. Two typical examples show the coupling effect between coupling displacements and large overall motion on the dynamics of flexible multibody system consisting of beams. 展开更多
关键词 coupling displacement coupling dynamical modeling theory large overall motion single direction recursive formulation flexible multibody system
下载PDF
Entanglement Dynamics of Two Qubits Coupled Independently to Cavities in the Ultrastrong Coupling Regime:Analytical Results
11
作者 朱维婷 任清褒 +1 位作者 段立伟 陈庆虎 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第5期5-8,共4页
Dynamics of quantum entanglement of two qubits in two identical quantum Rabi models is studied analytically in the framework of corrections to the rotating-wave approximations. A closed-form expression for the entangl... Dynamics of quantum entanglement of two qubits in two identical quantum Rabi models is studied analytically in the framework of corrections to the rotating-wave approximations. A closed-form expression for the entanglement dynamics initiated from the well-known Bell states is derived, which is very close to the numerical exact results up to the ultrastrong coupling regime. It is found that the vanishing entanglement can be purely induced by the counter-rotating terms, and can be enhanced with the atom-cavity coupling. 展开更多
关键词 RWA on it in Entanglement dynamics of Two Qubits Coupled Independently to Cavities in the Ultrastrong coupling Regime:Analytical Results of for been is that Bell
下载PDF
A vertical coupling dynamic analysis method and engineering application of vehicle–track–substructure based on forced vibration
12
作者 Guolong Li Mangmang Gao +2 位作者 Jingjing Yang Yunlu Wang Xueming Cao 《Railway Sciences》 2022年第2期224-240,共17页
Purpose–This study aims to propose a vertical coupling dynamic analysis method of vehicle–track–substructure based on forced vibration and use this method to analyze the influence on the dynamic response of track a... Purpose–This study aims to propose a vertical coupling dynamic analysis method of vehicle–track–substructure based on forced vibration and use this method to analyze the influence on the dynamic response of track and vehicle caused by local fastener failure.Design/methodology/approach–The track and substructure are decomposed into the rail subsystem and substructure subsystem,in which the rail subsystem is composed of two layers of nodes corresponding to the upper rail and the lower fastener.The rail is treated as a continuous beam with elastic discrete point supports,and spring-damping elements are used to simulate the constraints between rail and fastener.Forced displacement and forced velocity are used to deal with the effect of the substructure on the rail system,while the external load is used to deal with the reverse effect.The fastener failure is simulated with the methods that cancel the forced vibration transmission,namely take no account of the substructure–rail interaction at that position.Findings–The dynamic characteristics of the infrastructure with local diseases can be accurately calculated by using the proposed method.Local fastener failure will slightly affect the vibration of substructure and carbody,but it will significantly intensify the vibration response between wheel and rail.The maximum vertical displacement and the maximum vertical vibration acceleration of rail is 2.94 times and 2.97 times the normal value,respectively,under the train speed of 350 km$h1.At the same time,the maximum wheel–rail force and wheel load reduction rate increase by 22.0 and 50.2%,respectively,from the normal value.Originality/value–This method can better reveal the local vibration conditions of the rail and easily simulate the influence of various defects on the dynamic response of the coupling system. 展开更多
关键词 Vehicle–track–substructure coupling dynamic analysis Forced vibration Vibration response FASTENER FAILURE
下载PDF
Dynamic mechanical characteristics of deep Jinping marble in complex stress environments
13
作者 Chendi Lou Heping Xie +6 位作者 Ru Zhang Hai Ren Hao Luo Kun Xiao Yuan Peng Qiang Tan Li Ren 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期630-644,共15页
To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain ... To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain rates and the stress environments in depth significantly affect the mechanical characteristics of rocks.The sensitivity of strain rate to the dynamic strength and deformation modulus shows a negative correlation with depth,indicating that producing penetrative cracks in deep environments is more difficult when damage occurs.The dynamic strength shows a tendency to decrease and then increase slightly,but decreases sharply finally.Transmissivity demonstrates a similar trend as that of strength,whereas reflectivity indicates the opposite trend.Furthermore,two critical depths with high dynamically induced hazard possibilities based on the China Jinping Underground Laboratory(CJPL)were proposed for deep engineering.The first critical depth is 600-900 m,beyond which the sensitivity of rock dynamic characteristics to the strain rate and restraint of circumferential stress decrease,causing instability of surrounding rocks under axial stress condition.The second one lies at 1500-1800 m,where the wave impedance and dynamic strength of deep surrounding rocks drop sharply,and the dissipation energy presents a negative value.It suggests that the dynamic instability of deep surrounding rocks can be divided into dynamic load dominant and dynamic load induced types,depending on the second critical depth. 展开更多
关键词 Rock mechanics Split-Hopkinson pressure bar Coupled static‒dynamic loading Different depths Holmquist-Johnson-Cook(HJC)model
下载PDF
Continuum and Discrete Element Coupling Approach to Analyzing Seismic Responses of a Slope Covered by Deposits 被引量:7
14
作者 ZHANG Hua LU Yang 《Journal of Mountain Science》 SCIE CSCD 2010年第3期264-275,共12页
Numerical analyses of earthquake effects on the deformation, stability, and load transfer of a slope covered by deposits are traditionally based on the assumption that the slope is a continuum. It would be problem... Numerical analyses of earthquake effects on the deformation, stability, and load transfer of a slope covered by deposits are traditionally based on the assumption that the slope is a continuum. It would be problematic, however, to extend these approaches to the simulation of the slide, collapse and disintegration of the deposits under seismic loading. Contrary to this, a discrete element method (DEM) provides a means to consider large displacement and rotation of the non-continuum. To take the advantages of both methods of continuum and non- continuum analyses, seismic responses of a slope covered by deposits are studied by coupling a twodimensional (a-D) finite difference method and a 2-D DEM, with the bedrock being modelled by the finite difference grids and the deposits being represented by disks. A smooth transition across the boundaries of the continuous/discontinuous domains is obtained by imposing the compatibility condition and equilibrium condition along their interfaces. In the course of computation, the same time-step value is chosen for both continuous and discontinuous domains. The free-field boundaries are adopted for lateral grids of bedrock domain to eliminate the radiation damping effect. When the static equilibrium under gravity load is obtained, dynamic calculation begins under excitation of the seismic wave input from the continuum model bottom. In this way, responses to the earthquake of a slope covered by deposits are analyzed dynamically. Combined with field monitoring data, deformation and stability of the slope are discussed. The effects of the relevant parameters of spectrum characteristic, duration, andpeak acceleration of seismic waves are further investigated and explained from the simulations. 展开更多
关键词 SLOPE DEPOSIT CONTINUUM discreteelement method dynamic coupling rock/soilinterface
下载PDF
A Novel Model for Describing Rail Weld Irregularities and Predicting Wheel-Rail Forces Using a Machine Learning Approach
15
作者 Linlin Sun Zihui Wang +3 位作者 Shukun Cui Ziquan Yan Weiping Hu Qingchun Meng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期555-577,共23页
Rail weld irregularities are one of the primary excitation sources for vehicle-track interaction dynamics in modern high-speed railways.They can cause significant wheel-rail dynamic interactions,leading to wheel-rail ... Rail weld irregularities are one of the primary excitation sources for vehicle-track interaction dynamics in modern high-speed railways.They can cause significant wheel-rail dynamic interactions,leading to wheel-rail noise,component damage,and deterioration.Few researchers have employed the vehicle-track interaction dynamic model to study the dynamic interactions between wheel and rail induced by rail weld geometry irregularities.However,the cosine wave model used to simulate rail weld irregularities mainly focuses on the maximum value and neglects the geometric shape.In this study,novel theoretical models were developed for three categories of rail weld irregularities,based on measurements of the high-speed railway from Beijing to Shanghai.The vertical dynamic forces in the time and frequency domains were compared under different running speeds.These forces generated by the rail weld irregularities that were measured and modeled,respectively,were compared to validate the accuracy of the proposed model.Finally,based on the numerical study,the impact force due to rail weld irrregularity is modeled using an Artificial Neural Network(ANN),and the optimum combination of parameters for this model is found.The results showed that the proposed model provided a more accurate wheel/rail dynamic evaluation caused by rail weld irregularities than that established in the literature.The ANN model used in this paper can effectively predict the impact force due to rail weld irrregularity while reducing the computation time. 展开更多
关键词 Rail weld irregularity high-speed railway vehicle-track coupled dynamics wheel/rail dynamic vertical force artificial neural networks
下载PDF
Dynamic response analysis of a moored crane-ship with a flexible boom 被引量:8
16
作者 Hui-li REN Xue-lin WANG +1 位作者 Yu-jin HU Cheng-gang LI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第1期26-31,共6页
The dynamic response of moored crane-ship is studied. Governing equations for the dynamic response of a crane-ship coupled with the pendulum motion of the payload are derived based on Lagrange’s equations. The boom i... The dynamic response of moored crane-ship is studied. Governing equations for the dynamic response of a crane-ship coupled with the pendulum motion of the payload are derived based on Lagrange’s equations. The boom is modeled based on finite element method, while the payload is modeled as a planar pendulum of point mass. The dynamic response was studied using numerical method. The calculation results show that the large-amplitude responses occur at wave periods near the natural period of the payload. Load swing angle is smaller for crane-ship with flexible boom, in comparison with rigid boom. The ship surge mo- tions have large vibrations for crane-ship with flexible boom, which were not observed for a rigid boom. The analysis identifies the significance of key parameters and reveals how the system design can be adjusted to avoid critical conditions. 展开更多
关键词 dynamic response Moored crane-ship Finite element method Rigid-flexible coupling dynamic model
下载PDF
Coupled Dynamic Response Analysis of A Multi-Column Tension-Leg-Type Floating Wind Turbine 被引量:7
17
作者 赵永生 杨建民 +1 位作者 何炎平 顾敏童 《China Ocean Engineering》 SCIE EI CSCD 2016年第4期505-520,共16页
This paper presents a coupled dynamic response analysis of a multi-column tension-leg-type floating wind turbine(Wind Star TLP system) under normal operation and parked conditions. Wind-only load cases, wave-only lo... This paper presents a coupled dynamic response analysis of a multi-column tension-leg-type floating wind turbine(Wind Star TLP system) under normal operation and parked conditions. Wind-only load cases, wave-only load cases and combined wind and wave load cases were analyzed separately for the Wind Star TLP system to identify the dominant excitation loads. Comparisons between an NREL offshore 5-MW baseline wind turbine installed on land and the Wind Star TLP system were performed. Statistics of selected response variables in specified design load cases(DLCs) were obtained and analyzed. It is found that the proposed Wind Star TLP system has small dynamic responses to environmental loads and it thus has almost the same mean generator power output under operating conditions as the land-based system. The tension mooring system has a sufficient safety factor, and the minimum tendon tension is always positive in all selected DLCs. The ratio of ultimate load of the tower base fore-aft bending moment for the Wind Star TLP system versus the land-based system can be as high as 1.9 in all of the DLCs considered. These results will help elucidate the dynamic characteristics of the proposed Wind Star TLP system, identify the difference in load effect between it and land-based systems, and thus make relevant modifications to the initial design for the Wind Star TLP system. 展开更多
关键词 floating wind turbine windStar TLP coupled dynamic response operating andparked condition
下载PDF
Dynamic analysis of traction motor in a locomotive considering surface waviness on races of a motor bearing 被引量:10
18
作者 Yuqing Liu Zaigang Chen +1 位作者 Wei Li Kaiyun Wang 《Railway Engineering Science》 2021年第4期379-393,共15页
The traction motor is the power source of the locomotive.If the surface waviness occurs on the races of the motor bearing,it will cause abnormal vibration and noise,accelerate fatigue and wear,and seriously affect the... The traction motor is the power source of the locomotive.If the surface waviness occurs on the races of the motor bearing,it will cause abnormal vibration and noise,accelerate fatigue and wear,and seriously affect the stability and safety of the traction power transmission.In this paper,an excitation model coupling the time-varying displacement and contact stiffness excitations is adopted to investigate the effect of the surface waviness of the motor bearing on the traction motor under the excitation from the locomotive-track coupled system.The detailed mechanical power transmission path and the internal/external excitations(e.g.,wheel–rail interaction,gear mesh,and internal interactions of the rolling bearing)of the locomotive are comprehensively considered to provide accurate dynamic loads for the traction motor.Effects of the wavenumber and amplitude of the surface waviness on the traction motor and its neighbor components of the locomotive are investigated.The results indicate that controlling the amplitude of the waviness and avoiding the wavenumber being an integer multiple of the number of the rollers are helpful for reducing the abnormal vibration and noise of the traction motor. 展开更多
关键词 Rolling bearing Traction motor WAVINESS Vibration responses Vehicle-track coupled dynamics
下载PDF
NMR-based damage characterisation of backfill material in host rock under dynamic loading 被引量:22
19
作者 Binglei Li Jiquan Lan +2 位作者 Guangyao Si Guopeng Lin Liuqing Hu 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第3期329-335,共7页
It is not uncommon that backfill material used in underground mining being exposed to repetitive dynamic stresses induced by blasting operations or rockburst events. Understanding the strength and fracture evolution o... It is not uncommon that backfill material used in underground mining being exposed to repetitive dynamic stresses induced by blasting operations or rockburst events. Understanding the strength and fracture evolution of backfilled stopes is critical to maintain the long-term stope stability and ensure safe mining activities. This paper aims to study the damage evolution of the backfill material and its host rock behaviour under three-dimensional(3D) dynamic loading. Using a true-triaxial testing machine, multiple samples of backfill material enclosed by country rock were fabricated and tested under various dynamic loadings with different true-triaxial confining stress conditions. In addition, the nuclear magnetic resonance(NMR) measurement was conducted on the samples before and after exerting static and dynamic loading to obtain their porosity distribution changes. The experiment results suggested that with the increase of the dynamic loading, the porosity of the backfill sample goes through a two-stage process,which shows a slightly linear decrease and then followed by an exponential increase. The research findings can help understand the damage mechanism and fracture development of backfilled stopes and its host rock in deep underground mines, which are constantly subject to the combination of 3D static confining stress and dynamic loading. 展开更多
关键词 dynamic loading Backfill-country rock system True triaxial test Coupled static and dynamic loads Nuclear magnetic resonance(NMR) Damage evolution
下载PDF
Mechanical properties and failure behavior of rock with different flaw inclinations under coupled static and dynamic loads 被引量:24
20
作者 XIAO Peng LI Di-yuan +3 位作者 ZHAO Guo-yan ZHU Quan-qi LIU Huan-xin ZHANG Chun-shun 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期2945-2958,共14页
The deep fissured rock mass is affected by coupled effects of initial ground stress and external dynamic disturbance.In order to study the effect of internal flaw on pre-stressed rock mechanical responses and failure ... The deep fissured rock mass is affected by coupled effects of initial ground stress and external dynamic disturbance.In order to study the effect of internal flaw on pre-stressed rock mechanical responses and failure behavior under impact loading,intact granite specimens and specimens with different flaw inclinations are tested by a modified split Hopkinson pressure bar(SHPB)and digital image correlation(DIC)method.The results show that peak strain and dynamic strength of intact specimens and specimens with different flaw angles(α)decrease with the increase of axial static pressure.The 90°flaw has weak reduction effect on peak strain,dynamic strength and combined strength,while 45°and 0°flaws have remarkable reduction effect.Specimens with 90°flaw are suffered combined shear and tensile failure under middle and low axial static pre-stresses,and suffered shear failure under high axial static pre-stresses.Specimens with 45°and 0°flaws are suffered oblique shear failure caused by pre-existing flaw under different axial static pre-stresses.Besides,based on digital image correlation method,it is found that micro-cracks before formation of macro fractures(include shear and tensile fractures)belong to tensile cracks.Tensile and shear strain localizations at pre-existing flaw tip for specimen with 45°and 0°flaws are produced much earlier than that at other positions. 展开更多
关键词 split Hopkinson pressure bar(SHPB)system digital image correlation(DIC) coupled static and dynamic loads FLAW crack propagation
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部