Based on the recently proposed mirror-assisted multi-view digital image correlation(MV-DIC),we establish a cost-effective and easy-to-implement mirror-assisted multi-view high-speed digital image correlation(MVHS-DIC)...Based on the recently proposed mirror-assisted multi-view digital image correlation(MV-DIC),we establish a cost-effective and easy-to-implement mirror-assisted multi-view high-speed digital image correlation(MVHS-DIC)method and explore its applications for dual-surface full-field dynamic deformation measurement.In contrast to the general requirement of four expensive high-speed cameras for dual-surface dynamic deformation field measurement,the established mirror-assisted MVHS-DIC halves the cost by involving only two synchronized high-speed cameras and two planar mirrors.The two synchronized high-speed cameras can dynamically measure the front and rear surfaces of a sheet sample simultaneously through the reflection of the two mirrors.The results on the two surfaces are then transformed into the same coordinate system,leading to the required dual-surface 3D dynamical deformation fields.The effectiveness and accuracy of the established system are validated through modal tests of a cantilever aluminum sheet.The vibration measurement of a drum and dual-surface transient deformation measurement of a smartphone in the drop-collision process further prove its practicability.Benefiting from the attractive advantages of multi-view dynamic deformation measurement in a cost-efficient way,the established mirror-assisted MVHS-DIC is expected to encourage more comprehensive dynamic mechanical behavior characterization of regular-sized materials and structures in vibration and impact engineering fields.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11925202 and 11872009)National Science and Technology Major Project(Grant No.J2019-V-0006-0099)。
文摘Based on the recently proposed mirror-assisted multi-view digital image correlation(MV-DIC),we establish a cost-effective and easy-to-implement mirror-assisted multi-view high-speed digital image correlation(MVHS-DIC)method and explore its applications for dual-surface full-field dynamic deformation measurement.In contrast to the general requirement of four expensive high-speed cameras for dual-surface dynamic deformation field measurement,the established mirror-assisted MVHS-DIC halves the cost by involving only two synchronized high-speed cameras and two planar mirrors.The two synchronized high-speed cameras can dynamically measure the front and rear surfaces of a sheet sample simultaneously through the reflection of the two mirrors.The results on the two surfaces are then transformed into the same coordinate system,leading to the required dual-surface 3D dynamical deformation fields.The effectiveness and accuracy of the established system are validated through modal tests of a cantilever aluminum sheet.The vibration measurement of a drum and dual-surface transient deformation measurement of a smartphone in the drop-collision process further prove its practicability.Benefiting from the attractive advantages of multi-view dynamic deformation measurement in a cost-efficient way,the established mirror-assisted MVHS-DIC is expected to encourage more comprehensive dynamic mechanical behavior characterization of regular-sized materials and structures in vibration and impact engineering fields.