In this paper we first investigate zero-sum two-player stochastic differential games with reflection, with the help of theory of Reflected Backward Stochastic Differential Equations (RBSDEs). We will establish the d...In this paper we first investigate zero-sum two-player stochastic differential games with reflection, with the help of theory of Reflected Backward Stochastic Differential Equations (RBSDEs). We will establish the dynamic programming principle for the upper and the lower value functions of this kind of stochastic differential games with reflection in a straightforward way. Then the upper and the lower value functions are proved to be the unique viscosity solutions to the associated upper and the lower Hamilton-Jacobi-Bettman-Isaacs equations with obstacles, respectively. The method differs significantly from those used for control problems with reflection, with new techniques developed of interest on its own. Further, we also prove a new estimate for RBSDEs being sharper than that in the paper of E1 Karoui, Kapoudjian, Pardoux, Peng and Quenez (1997), which turns out to be very useful because it allows us to estimate the LP-distance of the solutions of two different RBSDEs by the p-th power of the distance of the initial values of the driving forward equations. We also show that the unique viscosity solution to the approximating Isaacs equation constructed by the penalization method converges to the viscosity solution of the Isaacs equation with obstacle.展开更多
基金supported by the Agence Nationale de la Recherche (France), reference ANR-10-BLAN 0112the Marie Curie ITN "Controlled Systems", call: FP7-PEOPLE-2007-1-1-ITN, no. 213841-2+3 种基金supported by the National Natural Science Foundation of China (No. 10701050, 11071144)National Basic Research Program of China (973 Program) (No. 2007CB814904)Shandong Province (No. Q2007A04),Independent Innovation Foundation of Shandong Universitythe Project-sponsored by SRF for ROCS, SEM
文摘In this paper we first investigate zero-sum two-player stochastic differential games with reflection, with the help of theory of Reflected Backward Stochastic Differential Equations (RBSDEs). We will establish the dynamic programming principle for the upper and the lower value functions of this kind of stochastic differential games with reflection in a straightforward way. Then the upper and the lower value functions are proved to be the unique viscosity solutions to the associated upper and the lower Hamilton-Jacobi-Bettman-Isaacs equations with obstacles, respectively. The method differs significantly from those used for control problems with reflection, with new techniques developed of interest on its own. Further, we also prove a new estimate for RBSDEs being sharper than that in the paper of E1 Karoui, Kapoudjian, Pardoux, Peng and Quenez (1997), which turns out to be very useful because it allows us to estimate the LP-distance of the solutions of two different RBSDEs by the p-th power of the distance of the initial values of the driving forward equations. We also show that the unique viscosity solution to the approximating Isaacs equation constructed by the penalization method converges to the viscosity solution of the Isaacs equation with obstacle.