The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measuremen...The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measurement of the dynamic load distribution in the four rows of two axlebox bearings on a bogie wheelset of a high-speed train under polygonal wheel–rail excitation. The measurement employed an improved strain-based method to measure the dynamic radial load distribution of roller bearings. The four rows of two axlebox bearings on a wheelset exhibited different ranges of loaded zones and different means of distributed loads. Besides, the mean value and standard deviation of measured roller–raceway contact loads showed non-monotonic variations with the frequency of wheel–rail excitation. The fatigue life of the four bearing rows under polygonal wheel–rail excitation was quantitatively predicted by compiling the measured roller–raceway contact load spectra of the most loaded position and considering the load spectra as input.展开更多
Compressing supercapacitor(SCs)electrode is essential for improving the energy storage characteristics and minimizing ions’distance travel,faradaic reactions,and overall ohmic resistance.Studies comprising the ion dy...Compressing supercapacitor(SCs)electrode is essential for improving the energy storage characteristics and minimizing ions’distance travel,faradaic reactions,and overall ohmic resistance.Studies comprising the ion dynamics in SC electrodes under compression are still rare.So,the ionic dynamics of five aqueous electrolytes in electrodes under compression were studied in this work for tracking electrochemical and structural changes under mechanical stress.A superionic state is formed when the electrode is compressed until the micropores match the dimensions with the electrolyte’s hydrated ion sizes,which increases the capacitance.If excessive compression is applied,the accessible pore regions decrease,and the capacitance drops.Hence,as the studied hydrated ions have different dimensions,the match between ion/pore sizes differs.To the LiOH and NaClO4electrolytes,increasing the pressure from 60 to 120 and 100 PSI raised the capacitance from 13.5 to 35.2 F g^(-1)and 30.9 to 39.0 F g^(-1),respectively.So,the KOH electrolyte with the lowest and LiCl with the biggest combination of hydrated ion size have their point of maximum capacitance(39.5 and 36.7F g^(-1))achieved at 140 and 80 PSI,respectively.To LiCl and KCl electrolytes,overcompression causes a drop in capacitance higher than 23%.展开更多
Urban green innovation(UGI)is essential to environmental protection,ecological conservation,and high quality economic growth.Using green patents,our study assessed the level of UGI of 287 Chinese cities at and above t...Urban green innovation(UGI)is essential to environmental protection,ecological conservation,and high quality economic growth.Using green patents,our study assessed the level of UGI of 287 Chinese cities at and above the prefecture level.Then,using the Dagum Gini coefficient,kernel density estimation(KDE),and con‐vergence models,we examined regional differences,distribution dynamics,and convergence of UGI across China.The study’s findings are as follows:(1)Overall,regional differences in UGI tended to narrow,and the main contributor to these differences was the difference between economic zones.(2)KDE showed that the level of UGI was rising,which was polarized within each economic zone.(3)The national UGI in economic zones other than the Northeast and Middle Yellow River Economic Zones featured significantσconvergence,while each economic zone showed absolute and conditionalβconvergence.展开更多
For expedited transportation,vehicular tunnels are often designed as two adjacent tunnels,which frequently experience dynamic stress waves from various orientations during blasting excavation.To analyze the impact of ...For expedited transportation,vehicular tunnels are often designed as two adjacent tunnels,which frequently experience dynamic stress waves from various orientations during blasting excavation.To analyze the impact of dynamic loading orientation on the stability of the twin-tunnel,a split Hopkinson pressure bar(SHPB)apparatus was used to conduct a dynamic test on the twin-tunnel specimens.The two tunnels were rotated around the specimen’s center to consider the effect of dynamic loading orientation.LS-DYNA software was used for numerical simulation to reveal the failure properties and stress wave propagation law of the twin-tunnel specimens.The findings indicate that,for a twin-tunnel exposed to a dynamic load from different orientations,the crack initiation position appears most often at the tunnel corner,tunnel spandrel,and tunnel floor.As the impact direction is created by a certain angle(30°,45°,60°,120°,135°,and 150°),the fractures are produced in the middle of the line between the left tunnel corner and the right tunnel spandrel.As the impact loading angle(a)is 90°,the tunnel sustains minimal damage,and only tensile fractures form in the surrounding rocks.The orientation of the impact load could change the stress distribution in the twin-tunnel,and major fractures are more likely to form in areas where the tensile stress is concentrated.展开更多
To study the dynamic mechanical properties and failure characteristics of intersecting jointed rock masses with different joint distributions under confining pressure,considering the cross angleαand joint persistence...To study the dynamic mechanical properties and failure characteristics of intersecting jointed rock masses with different joint distributions under confining pressure,considering the cross angleαand joint persistence ratioη,a numerical model of the biaxial Hopkinson bar test system was established using the finite element method–discrete-element model coupling method.The validity of the model was verified by comparing and analyzing it in conjunction with laboratory test results.Dynamics-static combined impact tests were conducted on specimens under various conditions to investigate the strength characteristics and patterns of crack initiation and expansion.The study revealed the predominant factors influencing intersecting joints with different angles and penetrations under impact loading.The results show that the peak stress of the specimens decreases first and then increases with the increase of the cross angle.Whenα<60°,regardless of the value ofη,the dynamic stress of the specimens is controlled by the main joint.Whenα≥60°,the peak stress borne by the specimens decreases with increasingη.Whenα<60°,the initiation and propagation of cracks in the cross-jointed specimens are mainly controlled by the main joint,and the final failure surface of the specimens is composed of the main joint and wing cracks.Whenα≥60°orη≥0.67,the secondary joint guides the expansion of the wing cracks,and multiple failure surfaces composed of main and secondary joints,wing cracks,and co-planar cracks are formed.Increasing lateral confinement significantly increases the dynamic peak stress able to be borne by the specimens.Under triaxial conditions,the degree of failure of the intersecting jointed specimens is much lower than that under uniaxial and biaxial conditions.展开更多
Neutron-skin thickness is a key parameter for a neutron-rich nucleus;however,it is difficult to determine.In the framework of the Lanzhou Quantum Molecular Dynamics(LQMD)model,a possible probe for the neutron-skin thi...Neutron-skin thickness is a key parameter for a neutron-rich nucleus;however,it is difficult to determine.In the framework of the Lanzhou Quantum Molecular Dynamics(LQMD)model,a possible probe for the neutron-skin thickness(δ_(np))of neutron-rich ^(48)Ca was studied in the 140A MeV ^(48)Ca+^(9)Be projectile fragmentation reaction based on the parallel momentum distribution(p∥)of the residual fragments.A Fermi-type density distribution was employed to initiate the neutron density distributions in the LQMD simulations.A combined Gaussian function with different width parameters for the left side(Γ_(L))and the right side(Γ_(R))in the distribution was used to describe the p∥of the residual fragments.Taking neutron-rich sulfur isotopes as examples,Γ_(L) shows a sensitive correlation withδ_(np) of ^(48)Ca,and is proposed as a probe for determining the neutron skin thickness of the projectile nucleus.展开更多
This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less impor...This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less importance in controlling the maximum response to impulsive loadings because the maximum response is reached in a very short time,before the damping forces can dissipate a significant portion of the energy input into the system.The development of two sine series solutions,relating to different types of impulsive loadings,one involving a single concentrated force and the other a distributed line load,are presented.This study revealed that when a simply supported Euler-Bernoulli beam,resting on a Winkler soil model,is subject to an impact load,the resulting vertical displacements,bending moments and shear forces produced along the span of the beam are considerably affected.In particular,the quantification of this effect is best observed,relative to the corresponding static solution,via an amplification factor.The computed impact amplification factors,for the sub-grade moduli used in this study,were in magnitude greater than 2,thus confirming the multiple-degree-of-freedom nature of the problem.展开更多
This paper is concerned with the finite-time dissipative synchronization control problem of semi-Markov switched cyber-physical systems in the presence of packet losses, which is constructed by the Takagi–Sugeno fuzz...This paper is concerned with the finite-time dissipative synchronization control problem of semi-Markov switched cyber-physical systems in the presence of packet losses, which is constructed by the Takagi–Sugeno fuzzy model. To save the network communication burden, a distributed dynamic event-triggered mechanism is developed to restrain the information update. Besides, random packet dropouts following the Bernoulli distribution are assumed to occur in sensor to controller channels, where the triggered control input is analyzed via an equivalent method containing a new stochastic variable. By establishing the mode-dependent Lyapunov–Krasovskii functional with augmented terms, the finite-time boundness of the error system limited to strict dissipativity is studied. As a result of the help of an extended reciprocally convex matrix inequality technique, less conservative criteria in terms of linear matrix inequalities are deduced to calculate the desired control gains. Finally, two examples in regard to practical systems are provided to display the effectiveness of the proposed theory.展开更多
UNITANK is a biological wastewater treatment process that combines the advantages of traditional activated sludge process and sequencing batch reactor, which is divided into Tank A, B and C. In this study, the sludge ...UNITANK is a biological wastewater treatment process that combines the advantages of traditional activated sludge process and sequencing batch reactor, which is divided into Tank A, B and C. In this study, the sludge distribution and its impact on performance of UNITANK were carried out in Liede Wastewater Plant (WWTP) of Guangzhou, China. Results showed that there was a strong affiliation between Tank A and B of the system in sludge concentration distribution. The initial sludge concentration in Tank A could present the sludge distribution of the whole system. The sludge distribution was mainly influenced by hydraulic condition. Unsteady sludge distribution had an impact on variations of substrates in reactors, especially in decisive reactor, and this could lead to failure of system. Settler could partially remove substrates such as COD and NO3-N, but there was adventure of sludge deterioration. The rational initial sludge concentration in Tank A should be 4000-6000 mg/L MLSS.展开更多
Researching the dynamic distribution characteristics and trend evolution of agricultural carbon emissions is of considerable significance in formulating an effective agricultural carbon reduction policy.Based on measu...Researching the dynamic distribution characteristics and trend evolution of agricultural carbon emissions is of considerable significance in formulating an effective agricultural carbon reduction policy.Based on measurement of agricultural carbon emissions of 31 provinces over the period 2002-2011,the study observed regional differences and the dynamic evolution of distribution of agricultural carbon emissions using agricultural carbon intensity as the indicator,accompanied by Gini coefficients and the kernel density estimation method.The results demonstrate first that agricultural carbon emissions for China show an obvious nonequilibrium nature in regard to spatial distribution.According to the differences in agricultural carbon emissions dynamic trends,we divided the 31 regions into four types- continuous decline,fluctuating decline,continuous increase,and fluctuating increase.Further,agricultural carbon emissions intensity showed a downward trend with significant differences in the research areas.Second,the gap in spatial distribution of national agricultural carbon emissions is gradually expanding based on the results calculated by Gini coefficient.From the perception of regional differences in agricultural carbon emissions,the eastern region showed an average level,the gap was more obvious in the central region,while western region showed a trend of fluctuating downward.Third,according to estimation by kernel density,the regional disparity in agricultural carbon emissions had a downward,but limited,trend.In regard to agricultural carbon emissions over the three areas,the regional gap not only tended to decrease but also showed a "four way" differentiation phenomenon in the eastern region.The difference in the central region difference was narrower.On the whole,the gap for the western region reduced steadily over a small range.展开更多
Carbohydrate represents an important part of the soil labile organic carbon pool. Water soluble carbohydrate drives the C cycle in forest soil by affecting microbial activity and hot water extractable car- bohydrate i...Carbohydrate represents an important part of the soil labile organic carbon pool. Water soluble carbohydrate drives the C cycle in forest soil by affecting microbial activity and hot water extractable car- bohydrate is thought related to soil carbon sequestration due to the asso- ciation with soil aggregation. In a temperate forest region of northeast China, Changbai Mountain, we investigated the abundance, spatial dis- tribution, and seasonal dynamics of cool and hot-water extractable car- bohydrate in soils under mixed broad-leaved Korean pine forest. The concentrations of cool-water extractable carbohydrate (CWECH) in three soil layers (0-5, 5-10, 10-20 cm) ranged from 4.1 to 193.3 g.kg-1 dry soil, decreasing rapidly with soil depth. On an annual average, the CWECH concentrations in soils at depths of 5-10 and 10-20 cm were 54.2% and 24.0%, respectively, of that in the 0-5 cm soil layer. CWECH showed distinct seasonal dynamics with the highest concentrations in early spring, lowest in summer, and increasing concentrations in autumn. Hot-water extractable carbohydrate (HWECH) concentrations in three soil layers ranged from 121.4 to 2026.2 g.kgq dry soil, which were about one order of magnitude higher than CWECH. The abundance of HWECH was even more profile-dependent than CWECH, and decreased more rapidly with soil depth. On an annual average, the HWECH concentration in soils 10-20 cm deep was about one order of magnitude lower than that in the top 0-5 cm soil. The seasonality of HWECH roughly tracked that of CWECH but with seasonal fluctuations of smaller amplitude. The car- bohydrate concentrations in cool/hot water extracts of soil were positively correlated with UV254 and UV2s0 of the same solution, which has implications for predicting the leaching loss of water soluble organic carbon.展开更多
The vertical distribution pattern and seasonal dynamics of fine root parameters for the apple trees of different ages (3, 10, 15, and 20 years old) on the Loess Plateau of China were studied. Soil coring method was ...The vertical distribution pattern and seasonal dynamics of fine root parameters for the apple trees of different ages (3, 10, 15, and 20 years old) on the Loess Plateau of China were studied. Soil coring method was used to determine the vertical distribution and seasonal dynamics of fine roots at different root radial distances (1.0, 1.5, and 2.0 m from the main tree trunk). The fine root biomass density (FRD), fine root length density (RLD), and specific root length (SRL), as well as soil water content and soil temperature were also measured. The FRD and RLD for the 10, 15, and 20 years old trees reached peak values in the 20-30 cm soil layer. For the 3 years old tree, the highest FRD and RLD were observed in the 10-20 cm soil layer. The FRD and RLD decreased with increased soil depth from the 10-20 or 20-30 cm soil layer for all age apple trees. The SRL declined with the increase of tree age. The FRD at the 1.0 m radial distance from the main tree trunk was higher than that at other radial distances in the 3 and 10 years old orchard. However, in the 15 and 20 years old orchards, especially the 20 years old orchard, the FRD at the 2.0 m radial distance was nearly equal to or higher than that at the 1.0 and 1.5 m radial distances. For all the root radiuses or the tree ages, the FRD, RLD, and SRL were the highest in spring and the lowest in autumn. The age of an apple tree does not affect the vertical distribution pattern but the biomass of fine roots and the SRL. Radial distance affects the root horizontal distribution of 3 and 10 years old trees but the 15 and 20 years old trees. Additionally, effects of soil temperature and soil moisture on fine root distribution or seasonal dynamics are not significant.展开更多
In machinery fault diagnosis,labeled data are always difficult or even impossible to obtain.Transfer learning can leverage related fault diagnosis knowledge from fully labeled source domain to enhance the fault diagno...In machinery fault diagnosis,labeled data are always difficult or even impossible to obtain.Transfer learning can leverage related fault diagnosis knowledge from fully labeled source domain to enhance the fault diagnosis performance in sparsely labeled or unlabeled target domain,which has been widely used for cross domain fault diagnosis.However,existing methods focus on either marginal distribution adaptation(MDA)or conditional distribution adaptation(CDA).In practice,marginal and conditional distributions discrepancies both have significant but different influences on the domain divergence.In this paper,a dynamic distribution adaptation based transfer network(DDATN)is proposed for cross domain bearing fault diagnosis.DDATN utilizes the proposed instance-weighted dynamic maximum mean discrepancy(IDMMD)for dynamic distribution adaptation(DDA),which can dynamically estimate the influences of marginal and conditional distribution and adapt target domain with source domain.The experimental evaluation on cross domain bearing fault diagnosis demonstrates that DDATN can outperformance the state-of-the-art cross domain fault diagnosis methods.展开更多
Dead heart of sugarcane is an important symptom caused by borer attack. In the present study, the spatial distribution and dynamics of dead heart of sugarcane in the field were investigated based on geostatistical ana...Dead heart of sugarcane is an important symptom caused by borer attack. In the present study, the spatial distribution and dynamics of dead heart of sugarcane in the field were investigated based on geostatistical analysis, and semivariograms were computed in four separate directions(0°, 45°, 90° and 135°) and fitted with various theoretical models to determine the best fitted one. The Ordinary Kriging was used to interpolate spatial data. The results revealed that the density of dead hearts of sugarcane increased in a single-peak pattern, and the degree of spatial aggregation and random variation both decreased with the increase in the density of dead heart. In addition, dead heart of sugarcane caused by borer exhibited spatial aggregation.With the increase in the density of dead heart, the degree of spatial aggregation decreased, while the correlation increased. Kriging interpolation indicated that the correlation between the spatial patches was weak in early seedling stage, and became strong in middle and late seedling stage.展开更多
Core shooting process plays a decisive role in the quality of sand cores, and core box vents distribution is one of the most important factor determining the effectiveness of core shooting process. In this paper, the ...Core shooting process plays a decisive role in the quality of sand cores, and core box vents distribution is one of the most important factor determining the effectiveness of core shooting process. In this paper, the influence of core box vents distribution on the flow dynamics of core shooting process was investigated based on in situ experimental observations with transparent core box, high-speed camera and pressure measuring system. Attention was focused on the variation of both the flow behavior of sand and pressure curves due to different vents distribution. Taking both kinetic and frictional stress into account, a kinetic-frictional constitutive model was established to describe the internal momentum transfer in the solid phase. Two-fluid model(TFM) simulation was then performed and good agreement was achieved between the experimental and simulated results on both the flow behavior of sand and the pressure curves. It was found that vents distribution has direct effect on the pressure difference of different locations in the core box, which determines the buoyancy force exerting on the sand particles and significantly influences the filling process of core sand.展开更多
Roots are responsible for the uptake of water and nutrients by plants and have the plasticity to dynamically respond to different environmental conditions. However, most land surface models currently prescribe rooting...Roots are responsible for the uptake of water and nutrients by plants and have the plasticity to dynamically respond to different environmental conditions. However, most land surface models currently prescribe rooting profiles as a function only of vegetation type, with no consideration of the surroundings. In this study, a dynamic rooting scheme, which describes root growth as a compromise between water and nitrogen availability, was incorporated into CLM4.5 with carbon-nitrogen (CN) interactions (CLM4.5-CN) to investigate the effects of a dynamic root distribution on eco-hydrological modeling. Two paired numerical simulations were conducted for the Tapajos National Forest km83 (BRSa3) site and the Amazon, one using CLM4.5-CN without the dynamic rooting scheme and the other including the proposed scheme. Simulations for the BRSa3 site showed that inclusion of the dynamic rooting scheme increased the amplitudes and peak values of diurnal gross primary production (GPP) and latent heat flux (LE) for the dry season, and improved the carbon (C) and water cycle modeling by reducing the RMSE of GPP by 0.4 g C m^-2 d^-1, net ecosystem exchange by 1.96 g C m^-2 d^-1, LE by 5.0 W m^-2, and soil moisture by 0.03 m^3 m^-3, at the seasonal scale, compared with eddy flux measurements, while having little impact during the wet season. For the Amazon, regional analysis also revealed that vegetation responses (including GPP and LE) to seasonal drought and the severe drought of 2005 were better captured with the dynamic rooting scheme incorporated.展开更多
The depletion rate of phosphate in the soil-root interface zone increased along with growth and phosphateuptake of wheat or maize, which indicated that the phosphate distribution in soil near the root surfaceagreed we...The depletion rate of phosphate in the soil-root interface zone increased along with growth and phosphateuptake of wheat or maize, which indicated that the phosphate distribution in soil near the root surfaceagreed well with the phosphate movement in rhizosphere and phosphate uptake by plant. The relativeaccumulation zone of phosphate within 0.5 mm apart from the root surface developed at the 15th day or soafter cultivating wheat or maize since the root phosphate secretion increased gradually in this stage. Thephosphate distribution in the soil-root interface zone against the growing time (t) and the distance from theroot plane (x) could be described by the non-linear regression equation with the third powers of x and t.展开更多
The mechanical property and deformation mechanism of twinned gold nanowire with non-uniform distribution of twinned boundaries(TBs)are studied by the molecular dynamics(MD)method.It is found that the twin boundary spa...The mechanical property and deformation mechanism of twinned gold nanowire with non-uniform distribution of twinned boundaries(TBs)are studied by the molecular dynamics(MD)method.It is found that the twin boundary spacing(TBS)has a great effect on the strength and plasticity of the nanowires with uniform distribution of TBs.And the strength enhances with the decrease of TBS,while its plasticity declines.For the nanowires with non-uniform distribution of TBs,the differences in distribution among different TBSs have little effect on the Young's modulus or strength,and the compromise in strength appears.But the differences have a remarkable effect on the plasticity of twinned gold nanowire.The twinned gold nanowire with higher local symmetry ratio has better plasticity.The initial dislocations always form in the largest TBS and the fracture always appears at or near the twin boundaries adjacent to the smallest TBS.Some simulation results are consistent with the experimental results.展开更多
It is very important to study eco-physiological processes of plants and to determine quantitative relations between accumulation, distribution of dry matter and environmental factors for regionalization, standardizati...It is very important to study eco-physiological processes of plants and to determine quantitative relations between accumulation, distribution of dry matter and environmental factors for regionalization, standardization and precision agriculture. Meanwhile, global changes, e.g., atmospheric CO2 concentration rising, global warming, and climate abnormity, have been effecting on agricultural productivity. This study provides a theoretical basis for predicting productive potentials and development trends in different agricultural regions. One-year-old black walnut (Juglans hindsii) seedlings were employed as subjects for setting up the dynamic models of dry matter accumulation and distribution, based on mechanistic models of photosynthesis, matter conservation and concentration gradient. Under optimum conditions of soil moisture and mineral nutrient, during the period of the canopy construction, the dry matter accumulation of the canopy conformed to logistic curves; but the accumulation of both total biornass and dry matter of stem-root could be divided into two phases: the first phase was exponential increase, the second was linear increase. The total biomass, dry matter of canopy and stem-root all presented a fluctuant increase, which was affected by the environmental factors. Ratio of daily increase of dry matter in the canopy and the steem-root (dWJdWs) was changeable along with growth periods and environmental factors. At the initial stage of the canopy forming, dW/dWs was larger, about 3.2 on average, which indicated that the photosynthetic product was mainly used to develop leaves; in the midterm, it was about 1.9, which indicated that the distribution of dry matter in the canopy and in the stem-root was relatively balanced; when the plant tended to stop growing, dWl/dWs decreased linearly, and the main distribution of dry matter moved to the roots.展开更多
This paper studies the possible dynamical property of the Tsallis distribution from a Fokker--Planck equation. For the Langevin dynamical system with an {arbitrary} potential function, Markovian friction and Gaussian ...This paper studies the possible dynamical property of the Tsallis distribution from a Fokker--Planck equation. For the Langevin dynamical system with an {arbitrary} potential function, Markovian friction and Gaussian white noise, it shows that the current form of Tsallis distribution cannot describe any nonequilibrium dynamics of the system, and it only stands for a simple isothermal situation of the system governed by a potential field. So the form of Tsallis distribution and many existing applications using the Tsallis distribution need to be reconsidered.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 12302238)the National Key Research and Development Program of China (Grant Nos. 2021YFB3400701, 2022YFB3402904)。
文摘The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measurement of the dynamic load distribution in the four rows of two axlebox bearings on a bogie wheelset of a high-speed train under polygonal wheel–rail excitation. The measurement employed an improved strain-based method to measure the dynamic radial load distribution of roller bearings. The four rows of two axlebox bearings on a wheelset exhibited different ranges of loaded zones and different means of distributed loads. Besides, the mean value and standard deviation of measured roller–raceway contact loads showed non-monotonic variations with the frequency of wheel–rail excitation. The fatigue life of the four bearing rows under polygonal wheel–rail excitation was quantitatively predicted by compiling the measured roller–raceway contact load spectra of the most loaded position and considering the load spectra as input.
基金the financial support from the Brazilian funding agencies CNPq(301486/2016-6)FAPESP(2014/02163-7,2017/11958-1,2018/20756-6)the support from Shell。
文摘Compressing supercapacitor(SCs)electrode is essential for improving the energy storage characteristics and minimizing ions’distance travel,faradaic reactions,and overall ohmic resistance.Studies comprising the ion dynamics in SC electrodes under compression are still rare.So,the ionic dynamics of five aqueous electrolytes in electrodes under compression were studied in this work for tracking electrochemical and structural changes under mechanical stress.A superionic state is formed when the electrode is compressed until the micropores match the dimensions with the electrolyte’s hydrated ion sizes,which increases the capacitance.If excessive compression is applied,the accessible pore regions decrease,and the capacitance drops.Hence,as the studied hydrated ions have different dimensions,the match between ion/pore sizes differs.To the LiOH and NaClO4electrolytes,increasing the pressure from 60 to 120 and 100 PSI raised the capacitance from 13.5 to 35.2 F g^(-1)and 30.9 to 39.0 F g^(-1),respectively.So,the KOH electrolyte with the lowest and LiCl with the biggest combination of hydrated ion size have their point of maximum capacitance(39.5 and 36.7F g^(-1))achieved at 140 and 80 PSI,respectively.To LiCl and KCl electrolytes,overcompression causes a drop in capacitance higher than 23%.
基金supported by the National Natural Science Foun‐dation of China[Grant No.72004124,72373084]Shandong Provin‐cial Education Department,China[Grant No.2022RW-064]+1 种基金Depart‐ment of Science and Technology of Shandong Province,China[Grant No.2022RKY04002]Humanities and Social Sciences Project of Shan‐dong Province,China[Grant No.2022-YYJJ-32].
文摘Urban green innovation(UGI)is essential to environmental protection,ecological conservation,and high quality economic growth.Using green patents,our study assessed the level of UGI of 287 Chinese cities at and above the prefecture level.Then,using the Dagum Gini coefficient,kernel density estimation(KDE),and con‐vergence models,we examined regional differences,distribution dynamics,and convergence of UGI across China.The study’s findings are as follows:(1)Overall,regional differences in UGI tended to narrow,and the main contributor to these differences was the difference between economic zones.(2)KDE showed that the level of UGI was rising,which was polarized within each economic zone.(3)The national UGI in economic zones other than the Northeast and Middle Yellow River Economic Zones featured significantσconvergence,while each economic zone showed absolute and conditionalβconvergence.
基金supported by the National Natural Science Foundation of China(Grant Nos.52204104 and U19A2098)the Science and Technology Department of Sichuan Province,China(Grant No.2023YFH0022).
文摘For expedited transportation,vehicular tunnels are often designed as two adjacent tunnels,which frequently experience dynamic stress waves from various orientations during blasting excavation.To analyze the impact of dynamic loading orientation on the stability of the twin-tunnel,a split Hopkinson pressure bar(SHPB)apparatus was used to conduct a dynamic test on the twin-tunnel specimens.The two tunnels were rotated around the specimen’s center to consider the effect of dynamic loading orientation.LS-DYNA software was used for numerical simulation to reveal the failure properties and stress wave propagation law of the twin-tunnel specimens.The findings indicate that,for a twin-tunnel exposed to a dynamic load from different orientations,the crack initiation position appears most often at the tunnel corner,tunnel spandrel,and tunnel floor.As the impact direction is created by a certain angle(30°,45°,60°,120°,135°,and 150°),the fractures are produced in the middle of the line between the left tunnel corner and the right tunnel spandrel.As the impact loading angle(a)is 90°,the tunnel sustains minimal damage,and only tensile fractures form in the surrounding rocks.The orientation of the impact load could change the stress distribution in the twin-tunnel,and major fractures are more likely to form in areas where the tensile stress is concentrated.
基金supported by Open Research Fund of Hubei Key Laboratory of Blasting(Engineering HKL-BEF202006)the National Natural Science Foundation of China(52079102,52108368).
文摘To study the dynamic mechanical properties and failure characteristics of intersecting jointed rock masses with different joint distributions under confining pressure,considering the cross angleαand joint persistence ratioη,a numerical model of the biaxial Hopkinson bar test system was established using the finite element method–discrete-element model coupling method.The validity of the model was verified by comparing and analyzing it in conjunction with laboratory test results.Dynamics-static combined impact tests were conducted on specimens under various conditions to investigate the strength characteristics and patterns of crack initiation and expansion.The study revealed the predominant factors influencing intersecting joints with different angles and penetrations under impact loading.The results show that the peak stress of the specimens decreases first and then increases with the increase of the cross angle.Whenα<60°,regardless of the value ofη,the dynamic stress of the specimens is controlled by the main joint.Whenα≥60°,the peak stress borne by the specimens decreases with increasingη.Whenα<60°,the initiation and propagation of cracks in the cross-jointed specimens are mainly controlled by the main joint,and the final failure surface of the specimens is composed of the main joint and wing cracks.Whenα≥60°orη≥0.67,the secondary joint guides the expansion of the wing cracks,and multiple failure surfaces composed of main and secondary joints,wing cracks,and co-planar cracks are formed.Increasing lateral confinement significantly increases the dynamic peak stress able to be borne by the specimens.Under triaxial conditions,the degree of failure of the intersecting jointed specimens is much lower than that under uniaxial and biaxial conditions.
基金the National Natural Science Foundation of China(Nos.12375123,11975091,and 12305130)the Natural Science Foundation of Henan Province(No.242300421048)+1 种基金China Postdoctoral Science Foundation(No.2023M731016)Henan Postdoctoral Foundation(No.HN2022164).
文摘Neutron-skin thickness is a key parameter for a neutron-rich nucleus;however,it is difficult to determine.In the framework of the Lanzhou Quantum Molecular Dynamics(LQMD)model,a possible probe for the neutron-skin thickness(δ_(np))of neutron-rich ^(48)Ca was studied in the 140A MeV ^(48)Ca+^(9)Be projectile fragmentation reaction based on the parallel momentum distribution(p∥)of the residual fragments.A Fermi-type density distribution was employed to initiate the neutron density distributions in the LQMD simulations.A combined Gaussian function with different width parameters for the left side(Γ_(L))and the right side(Γ_(R))in the distribution was used to describe the p∥of the residual fragments.Taking neutron-rich sulfur isotopes as examples,Γ_(L) shows a sensitive correlation withδ_(np) of ^(48)Ca,and is proposed as a probe for determining the neutron skin thickness of the projectile nucleus.
基金l’UniversitéLaval for the financial support of his sabbatical year at Dipartimento di Bioscienze e Territorio,Universitàdegli Studi del Molise in Campobasso,Italy。
文摘This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less importance in controlling the maximum response to impulsive loadings because the maximum response is reached in a very short time,before the damping forces can dissipate a significant portion of the energy input into the system.The development of two sine series solutions,relating to different types of impulsive loadings,one involving a single concentrated force and the other a distributed line load,are presented.This study revealed that when a simply supported Euler-Bernoulli beam,resting on a Winkler soil model,is subject to an impact load,the resulting vertical displacements,bending moments and shear forces produced along the span of the beam are considerably affected.In particular,the quantification of this effect is best observed,relative to the corresponding static solution,via an amplification factor.The computed impact amplification factors,for the sub-grade moduli used in this study,were in magnitude greater than 2,thus confirming the multiple-degree-of-freedom nature of the problem.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62263005)Guangxi Natural Science Foundation (Grant No. 2020GXNSFDA238029)+2 种基金Laboratory of AI and Information Processing (Hechi University), Education Department of Guangxi Zhuang Autonomous Region (Grant No. 2022GXZDSY004)Innovation Project of Guangxi Graduate Education (Grant No. YCSW2023298)Innovation Project of GUET Graduate Education (Grant Nos. 2022YCXS149 and 2022YCXS155)。
文摘This paper is concerned with the finite-time dissipative synchronization control problem of semi-Markov switched cyber-physical systems in the presence of packet losses, which is constructed by the Takagi–Sugeno fuzzy model. To save the network communication burden, a distributed dynamic event-triggered mechanism is developed to restrain the information update. Besides, random packet dropouts following the Bernoulli distribution are assumed to occur in sensor to controller channels, where the triggered control input is analyzed via an equivalent method containing a new stochastic variable. By establishing the mode-dependent Lyapunov–Krasovskii functional with augmented terms, the finite-time boundness of the error system limited to strict dissipativity is studied. As a result of the help of an extended reciprocally convex matrix inequality technique, less conservative criteria in terms of linear matrix inequalities are deduced to calculate the desired control gains. Finally, two examples in regard to practical systems are provided to display the effectiveness of the proposed theory.
基金Project supported by the National Natural Science Foundation of China (No. 50238050).
文摘UNITANK is a biological wastewater treatment process that combines the advantages of traditional activated sludge process and sequencing batch reactor, which is divided into Tank A, B and C. In this study, the sludge distribution and its impact on performance of UNITANK were carried out in Liede Wastewater Plant (WWTP) of Guangzhou, China. Results showed that there was a strong affiliation between Tank A and B of the system in sludge concentration distribution. The initial sludge concentration in Tank A could present the sludge distribution of the whole system. The sludge distribution was mainly influenced by hydraulic condition. Unsteady sludge distribution had an impact on variations of substrates in reactors, especially in decisive reactor, and this could lead to failure of system. Settler could partially remove substrates such as COD and NO3-N, but there was adventure of sludge deterioration. The rational initial sludge concentration in Tank A should be 4000-6000 mg/L MLSS.
基金funded by the National Natural Science Foundation of China[grant number 71273105]the Fundamental Research Funds for the Central Universities[grant number 2013YB12]
文摘Researching the dynamic distribution characteristics and trend evolution of agricultural carbon emissions is of considerable significance in formulating an effective agricultural carbon reduction policy.Based on measurement of agricultural carbon emissions of 31 provinces over the period 2002-2011,the study observed regional differences and the dynamic evolution of distribution of agricultural carbon emissions using agricultural carbon intensity as the indicator,accompanied by Gini coefficients and the kernel density estimation method.The results demonstrate first that agricultural carbon emissions for China show an obvious nonequilibrium nature in regard to spatial distribution.According to the differences in agricultural carbon emissions dynamic trends,we divided the 31 regions into four types- continuous decline,fluctuating decline,continuous increase,and fluctuating increase.Further,agricultural carbon emissions intensity showed a downward trend with significant differences in the research areas.Second,the gap in spatial distribution of national agricultural carbon emissions is gradually expanding based on the results calculated by Gini coefficient.From the perception of regional differences in agricultural carbon emissions,the eastern region showed an average level,the gap was more obvious in the central region,while western region showed a trend of fluctuating downward.Third,according to estimation by kernel density,the regional disparity in agricultural carbon emissions had a downward,but limited,trend.In regard to agricultural carbon emissions over the three areas,the regional gap not only tended to decrease but also showed a "four way" differentiation phenomenon in the eastern region.The difference in the central region difference was narrower.On the whole,the gap for the western region reduced steadily over a small range.
基金supported by made possible through National Key Basic Research Foundation, China (grants 2011CB403202)the National Natural Science Foundation of China (40930107)Program for Changjiang Scholars and Innovative Research Team in University (IRT1054)
文摘Carbohydrate represents an important part of the soil labile organic carbon pool. Water soluble carbohydrate drives the C cycle in forest soil by affecting microbial activity and hot water extractable car- bohydrate is thought related to soil carbon sequestration due to the asso- ciation with soil aggregation. In a temperate forest region of northeast China, Changbai Mountain, we investigated the abundance, spatial dis- tribution, and seasonal dynamics of cool and hot-water extractable car- bohydrate in soils under mixed broad-leaved Korean pine forest. The concentrations of cool-water extractable carbohydrate (CWECH) in three soil layers (0-5, 5-10, 10-20 cm) ranged from 4.1 to 193.3 g.kg-1 dry soil, decreasing rapidly with soil depth. On an annual average, the CWECH concentrations in soils at depths of 5-10 and 10-20 cm were 54.2% and 24.0%, respectively, of that in the 0-5 cm soil layer. CWECH showed distinct seasonal dynamics with the highest concentrations in early spring, lowest in summer, and increasing concentrations in autumn. Hot-water extractable carbohydrate (HWECH) concentrations in three soil layers ranged from 121.4 to 2026.2 g.kgq dry soil, which were about one order of magnitude higher than CWECH. The abundance of HWECH was even more profile-dependent than CWECH, and decreased more rapidly with soil depth. On an annual average, the HWECH concentration in soils 10-20 cm deep was about one order of magnitude lower than that in the top 0-5 cm soil. The seasonality of HWECH roughly tracked that of CWECH but with seasonal fluctuations of smaller amplitude. The car- bohydrate concentrations in cool/hot water extracts of soil were positively correlated with UV254 and UV2s0 of the same solution, which has implications for predicting the leaching loss of water soluble organic carbon.
基金support by the National Key Technologies R&D Program of China during the 11th Five-Year period(2006BAD09B09)Foundation of Shaanxi Province Education Committee,China (09JS073)+1 种基金the Specialdized Research Fund for the Doctoral Program of Higher Education,China (SRFDP200807181008)the Key Program of Baoji University of Arts and Sciences,China (ZK0846)
文摘The vertical distribution pattern and seasonal dynamics of fine root parameters for the apple trees of different ages (3, 10, 15, and 20 years old) on the Loess Plateau of China were studied. Soil coring method was used to determine the vertical distribution and seasonal dynamics of fine roots at different root radial distances (1.0, 1.5, and 2.0 m from the main tree trunk). The fine root biomass density (FRD), fine root length density (RLD), and specific root length (SRL), as well as soil water content and soil temperature were also measured. The FRD and RLD for the 10, 15, and 20 years old trees reached peak values in the 20-30 cm soil layer. For the 3 years old tree, the highest FRD and RLD were observed in the 10-20 cm soil layer. The FRD and RLD decreased with increased soil depth from the 10-20 or 20-30 cm soil layer for all age apple trees. The SRL declined with the increase of tree age. The FRD at the 1.0 m radial distance from the main tree trunk was higher than that at other radial distances in the 3 and 10 years old orchard. However, in the 15 and 20 years old orchards, especially the 20 years old orchard, the FRD at the 2.0 m radial distance was nearly equal to or higher than that at the 1.0 and 1.5 m radial distances. For all the root radiuses or the tree ages, the FRD, RLD, and SRL were the highest in spring and the lowest in autumn. The age of an apple tree does not affect the vertical distribution pattern but the biomass of fine roots and the SRL. Radial distance affects the root horizontal distribution of 3 and 10 years old trees but the 15 and 20 years old trees. Additionally, effects of soil temperature and soil moisture on fine root distribution or seasonal dynamics are not significant.
基金Supported by National Natural Science Foundation of China(Grant Nos.51875208,51475170)National Key Research and Development Program of China(Grant No.2018YFB1702400).
文摘In machinery fault diagnosis,labeled data are always difficult or even impossible to obtain.Transfer learning can leverage related fault diagnosis knowledge from fully labeled source domain to enhance the fault diagnosis performance in sparsely labeled or unlabeled target domain,which has been widely used for cross domain fault diagnosis.However,existing methods focus on either marginal distribution adaptation(MDA)or conditional distribution adaptation(CDA).In practice,marginal and conditional distributions discrepancies both have significant but different influences on the domain divergence.In this paper,a dynamic distribution adaptation based transfer network(DDATN)is proposed for cross domain bearing fault diagnosis.DDATN utilizes the proposed instance-weighted dynamic maximum mean discrepancy(IDMMD)for dynamic distribution adaptation(DDA),which can dynamically estimate the influences of marginal and conditional distribution and adapt target domain with source domain.The experimental evaluation on cross domain bearing fault diagnosis demonstrates that DDATN can outperformance the state-of-the-art cross domain fault diagnosis methods.
基金Supported by Earmarked Fund for Modern Agro-industry Technology Research System of China(CARS-20-2-2)Earmarked Fund for Modern Agro-industry Technology Research System of Yunnan Province
文摘Dead heart of sugarcane is an important symptom caused by borer attack. In the present study, the spatial distribution and dynamics of dead heart of sugarcane in the field were investigated based on geostatistical analysis, and semivariograms were computed in four separate directions(0°, 45°, 90° and 135°) and fitted with various theoretical models to determine the best fitted one. The Ordinary Kriging was used to interpolate spatial data. The results revealed that the density of dead hearts of sugarcane increased in a single-peak pattern, and the degree of spatial aggregation and random variation both decreased with the increase in the density of dead heart. In addition, dead heart of sugarcane caused by borer exhibited spatial aggregation.With the increase in the density of dead heart, the degree of spatial aggregation decreased, while the correlation increased. Kriging interpolation indicated that the correlation between the spatial patches was weak in early seedling stage, and became strong in middle and late seedling stage.
基金supported by the Innovation Platform for Through Process Modeling and Simulation of Advanced Materials Processing Technologies(No.2012ZX04012011)the National Science Foundation of China(No.51575304)
文摘Core shooting process plays a decisive role in the quality of sand cores, and core box vents distribution is one of the most important factor determining the effectiveness of core shooting process. In this paper, the influence of core box vents distribution on the flow dynamics of core shooting process was investigated based on in situ experimental observations with transparent core box, high-speed camera and pressure measuring system. Attention was focused on the variation of both the flow behavior of sand and pressure curves due to different vents distribution. Taking both kinetic and frictional stress into account, a kinetic-frictional constitutive model was established to describe the internal momentum transfer in the solid phase. Two-fluid model(TFM) simulation was then performed and good agreement was achieved between the experimental and simulated results on both the flow behavior of sand and the pressure curves. It was found that vents distribution has direct effect on the pressure difference of different locations in the core box, which determines the buoyancy force exerting on the sand particles and significantly influences the filling process of core sand.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41305066 and 41575096)
文摘Roots are responsible for the uptake of water and nutrients by plants and have the plasticity to dynamically respond to different environmental conditions. However, most land surface models currently prescribe rooting profiles as a function only of vegetation type, with no consideration of the surroundings. In this study, a dynamic rooting scheme, which describes root growth as a compromise between water and nitrogen availability, was incorporated into CLM4.5 with carbon-nitrogen (CN) interactions (CLM4.5-CN) to investigate the effects of a dynamic root distribution on eco-hydrological modeling. Two paired numerical simulations were conducted for the Tapajos National Forest km83 (BRSa3) site and the Amazon, one using CLM4.5-CN without the dynamic rooting scheme and the other including the proposed scheme. Simulations for the BRSa3 site showed that inclusion of the dynamic rooting scheme increased the amplitudes and peak values of diurnal gross primary production (GPP) and latent heat flux (LE) for the dry season, and improved the carbon (C) and water cycle modeling by reducing the RMSE of GPP by 0.4 g C m^-2 d^-1, net ecosystem exchange by 1.96 g C m^-2 d^-1, LE by 5.0 W m^-2, and soil moisture by 0.03 m^3 m^-3, at the seasonal scale, compared with eddy flux measurements, while having little impact during the wet season. For the Amazon, regional analysis also revealed that vegetation responses (including GPP and LE) to seasonal drought and the severe drought of 2005 were better captured with the dynamic rooting scheme incorporated.
文摘The depletion rate of phosphate in the soil-root interface zone increased along with growth and phosphateuptake of wheat or maize, which indicated that the phosphate distribution in soil near the root surfaceagreed well with the phosphate movement in rhizosphere and phosphate uptake by plant. The relativeaccumulation zone of phosphate within 0.5 mm apart from the root surface developed at the 15th day or soafter cultivating wheat or maize since the root phosphate secretion increased gradually in this stage. Thephosphate distribution in the soil-root interface zone against the growing time (t) and the distance from theroot plane (x) could be described by the non-linear regression equation with the third powers of x and t.
基金the National Natural Science Foundation of China(Grant No.51771033).
文摘The mechanical property and deformation mechanism of twinned gold nanowire with non-uniform distribution of twinned boundaries(TBs)are studied by the molecular dynamics(MD)method.It is found that the twin boundary spacing(TBS)has a great effect on the strength and plasticity of the nanowires with uniform distribution of TBs.And the strength enhances with the decrease of TBS,while its plasticity declines.For the nanowires with non-uniform distribution of TBs,the differences in distribution among different TBSs have little effect on the Young's modulus or strength,and the compromise in strength appears.But the differences have a remarkable effect on the plasticity of twinned gold nanowire.The twinned gold nanowire with higher local symmetry ratio has better plasticity.The initial dislocations always form in the largest TBS and the fracture always appears at or near the twin boundaries adjacent to the smallest TBS.Some simulation results are consistent with the experimental results.
基金funded by the Superior Cultivars Program of Shandong Province Government and Open Foundation Program of Chinese Academy of Sciences,China
文摘It is very important to study eco-physiological processes of plants and to determine quantitative relations between accumulation, distribution of dry matter and environmental factors for regionalization, standardization and precision agriculture. Meanwhile, global changes, e.g., atmospheric CO2 concentration rising, global warming, and climate abnormity, have been effecting on agricultural productivity. This study provides a theoretical basis for predicting productive potentials and development trends in different agricultural regions. One-year-old black walnut (Juglans hindsii) seedlings were employed as subjects for setting up the dynamic models of dry matter accumulation and distribution, based on mechanistic models of photosynthesis, matter conservation and concentration gradient. Under optimum conditions of soil moisture and mineral nutrient, during the period of the canopy construction, the dry matter accumulation of the canopy conformed to logistic curves; but the accumulation of both total biornass and dry matter of stem-root could be divided into two phases: the first phase was exponential increase, the second was linear increase. The total biomass, dry matter of canopy and stem-root all presented a fluctuant increase, which was affected by the environmental factors. Ratio of daily increase of dry matter in the canopy and the steem-root (dWJdWs) was changeable along with growth periods and environmental factors. At the initial stage of the canopy forming, dW/dWs was larger, about 3.2 on average, which indicated that the photosynthetic product was mainly used to develop leaves; in the midterm, it was about 1.9, which indicated that the distribution of dry matter in the canopy and in the stem-root was relatively balanced; when the plant tended to stop growing, dWl/dWs decreased linearly, and the main distribution of dry matter moved to the roots.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10675088)
文摘This paper studies the possible dynamical property of the Tsallis distribution from a Fokker--Planck equation. For the Langevin dynamical system with an {arbitrary} potential function, Markovian friction and Gaussian white noise, it shows that the current form of Tsallis distribution cannot describe any nonequilibrium dynamics of the system, and it only stands for a simple isothermal situation of the system governed by a potential field. So the form of Tsallis distribution and many existing applications using the Tsallis distribution need to be reconsidered.