A new algorithm for the solution of quadratic programming problemsis put forward in terms of the mixed energy theory and is furtherused for the incremental solution of elastic-plastic trussstructures. The method propo...A new algorithm for the solution of quadratic programming problemsis put forward in terms of the mixed energy theory and is furtherused for the incremental solution of elastic-plastic trussstructures. The method proposed is different from the traditionalone, for which the unknown variables are selected just in one classsuch as displacements or stresses. The present method selects thevariables in the mixed form with both displacement and stress. As themethod is established in the hybrid space, the information found inthe previous incremental step can be used for the solution of thepresent step, making the algorithm highly effi- cient in thenumerical solution process of quadratic programming problems. Theresults obtained in the exm- ples of the elastic-plastic solution ofthe truss structures verify what has been predicted in thetheoretical anal- ysis.展开更多
Short-leg shear wall structures are a new form of building structure that combine the merits of both frame and shear wall structures. Its architectural features, structure bearing and engineering cost are reasonable. ...Short-leg shear wall structures are a new form of building structure that combine the merits of both frame and shear wall structures. Its architectural features, structure bearing and engineering cost are reasonable. To analyze the elastic-plastic response of a short-leg shear wall structure during an earthquake, this study modified the multiple-vertical-rod element model of the shear wall, considered the shear lag effect and proposed a multiple-vertical-rod element coupling beam model with a new local stiffness domain. Based on the principle of minimum potential energy and the variational principle, the stiffness matrixes of a short-leg shear wall and a coupling beam are derived in this study. Furthermore, the bending shear correlation for the analysis of different parameters to describe the structure, such as the beam height to span ratio, short-leg shear wall height to thickness ratio, and steel ratio are introduced. The results show that the height to span ratio directly affects the structural integrity; and the short-leg shear wall height to thickness ratio should be limited to a range of approximately 6.0 to 7.0. The design of short-leg shear walls should be in accordance with the "strong wall and weak beam" principle.展开更多
In this paper, the improved near crack line analysis method proposed in Refs. [1] and [2] is used to investigate a center crack loaded by two pairs of antiplane point forces in a finite plate in an elastic-perfectly p...In this paper, the improved near crack line analysis method proposed in Refs. [1] and [2] is used to investigate a center crack loaded by two pairs of antiplane point forces in a finite plate in an elastic-perfectly plastic solid. And the analytical solutions are obtained, that is elastic-plastic stress fields near the crack line and the law that the length of the plastic zone along the crack line is varied with an external loads tr,ld the bearing capacity of a finite plate with a center crack. The results of this paper are sufficiently precise near the crack line, because the assumptions of the small scale yielding theory have not been used and no other assumptions have been taken.展开更多
A rigorous analytical model is developed for simulating the vibration behaviors of large-diameter openended pipe piles(OEPPs)and surrounding soil undergoing high-strain impact loading.To describe the soil behavior,the...A rigorous analytical model is developed for simulating the vibration behaviors of large-diameter openended pipe piles(OEPPs)and surrounding soil undergoing high-strain impact loading.To describe the soil behavior,the soil along pile shaft is divided into slip and nonslip zones and the base soil is modeled as a fictitious-soil pile(FSP)to account for the wave propagation in the soil.True soil properties are adopted and slippage at the pile-soil interface is considered,allowing realistic representation of largediameter OEPP mechanics.The developed model is validated by comparing with conventional models and finite element method(FEM).It is further used to successfully simulate and interpret the behaviors of a steel OEPP during the offshore field test.It is found that the variation in the vertical vibrations of shaft soil along radial direction is significant for large-diameter OEPPs,and the velocity amplitudes of the internal and external soil attenuate following different patterns.The shaft soil motion may not attenuate with depth due to the soil slippage,while the wave attenuation at base soil indicates an influence depth,with a faster attenuation rate than that in the pile.The findings from the current study should aid in simulating the vibration behaviors of large-diameter OEPP-soil system under high-strain dynamic loading.展开更多
Based on the minimum principle of acceleration in the elastic-plastic continua under finite def ormation, the dynamic response of an elastic-perfectly plastic pin-ended beam subjected to rectangular impulse loading is...Based on the minimum principle of acceleration in the elastic-plastic continua under finite def ormation, the dynamic response of an elastic-perfectly plastic pin-ended beam subjected to rectangular impulse loading is studied with the help of a numerical approach. The calculated results once again show the anomalous behavior of the beam during its response process, which was previously found in [1]. By carefully analyzing the instantaneous distribution of the bending moment, the membrane force, the curvature and displacement during the response process, it is concluded that the interactive effect between the geometry and materials nonlinearities of the structure is the key reason for leading to the anomalous behavior. This will be helpful for clarifying some misunderstandings in explaining the problem before.展开更多
To study the characteristics of the 5-prismatic–spherical–spherical(PSS)/universal–prismatic–universal(UPU)parallel mechanism with elastically active branched chains,the dynamics modeling and solutions of the para...To study the characteristics of the 5-prismatic–spherical–spherical(PSS)/universal–prismatic–universal(UPU)parallel mechanism with elastically active branched chains,the dynamics modeling and solutions of the parallel mechanism were investigated.First,the active branched chains and screw sliders were considered as spatial beam elements and plane beam element models,respectively,and the dynamic equations of each element model were derived using the Lagrange method.Second,the equations of the 5-PSS/UPU parallel mechanism were obtained according to the kinematic coupling relationship between the active branched chains and moving platform.Finally,based on the parallel mechanism dynamic equations,the natural frequency distribution of the 5-PSS/UPU parallel mechanism in the working space and elastic displacement of the moving platform were obtained.The results show that the natural frequency of the 5-PSS/UPU parallel mechanism under a given motion situation is greater than its operating frequency.The maximum position error is -0.096 mm in direction Y,and the maximum orientation error is -0.29°around the X-axis.The study provides important information for analyzing the dynamic performance,dynamic optimization design,and dynamic control of the 5-PSS/UPU parallel mechanism with elastically active branched chains.展开更多
A feasible method to improve the reliability and processing efficiency of large vibrating screen via the application of an elastic screen surface with multiple attached substructures (ESSMAS) was proposed. In the ES...A feasible method to improve the reliability and processing efficiency of large vibrating screen via the application of an elastic screen surface with multiple attached substructures (ESSMAS) was proposed. In the ESSMAS, every screen rod, with ends embedded into elastomer, is coupled to the main screen structure in a relatively flexible manner. The theoretical analysis was conducted, which consists of establishing dynamic model promoted from the fuzzy structure theory as well as calculating for the equivalent stiffness of each attached structure. According to the numerical simulation using the NEWMARK-fl integration method, this assembling pattern significantly leads to the screen surface/rod having larger vibration intensity than that of the corresponding position on screen structure, which specifically, with an averaged acceleration amplitude increasing ratio of 11.37% in theoretical analysis and 20.27% in experimental test. The experimental results, within a tolerant error, also confirm the established model and demonstrate the feasibility of ESSMAS.展开更多
A feasible method was proposed to improve the vibration intensity of screen surface via application of a new type elastic screen surface with multi degree of freedom(NTESSMDF). In the NTESSMDF, the primary robs were c...A feasible method was proposed to improve the vibration intensity of screen surface via application of a new type elastic screen surface with multi degree of freedom(NTESSMDF). In the NTESSMDF, the primary robs were coupled to the main screen structure with ends embedded into the elastomers, and the secondary robs were attached to adjacent two primary robs with elastic bands. The dynamic model of vibrating screen with NTESSMDF was established based on Lagrange's equation and the equivalent stiffnesses of the elastomer and elastic band were calculated. According to numerical simulation using the 4th order Runge-Kutta method, the vibration intensity of screen surface can be enhanced substantially with an averaged acceleration amplitude increasing ratio of 72.36%. The primary robs and secondary robs vibrate inversely in steady state, which would result in the friability of materials and avoid stoppage. The experimental results validate the dynamic characteristics with acceleration amplitude rising by62.93% on average, which demonstrates the feasibility of NTESSMDF.展开更多
The characterization and testing methods of the dynamic fractureinitiation toughness of elas- tic-plastic materials under tensileimpact are studied. By using the self-designed bar-bar tensile impactappa- ratus, a nove...The characterization and testing methods of the dynamic fractureinitiation toughness of elas- tic-plastic materials under tensileimpact are studied. By using the self-designed bar-bar tensile impactappa- ratus, a novel test method for studying dynamicfracture-initiation ahs been proposed based on the one-di- mensionaltest principle. The curve of average load v. s. displacement (P-δ)is smooth until unstable crack propagation, and the kinetic energywhich does not contribute to the crack growth can be removed fromtotal work done by external-force to the specimen.展开更多
Quayside container crane is a kind of huge dimension steel structure,which is the major equipment used for handling container at modern ports.With the aim to validate the safety and reliability of the crane under seis...Quayside container crane is a kind of huge dimension steel structure,which is the major equipment used for handling container at modern ports.With the aim to validate the safety and reliability of the crane under seismic loads,besides conventional analysis,elastic-plastic time history analysis under rare seismic intensity is carried out.An ideal finite element(FEM) elastic-plastic mechanical model of the quayside container crane is presented by using ANSYS codes.Furthermore,according to elastic-plastic time history analysis theory,deformation,stress and damage pattern of the structure under rare seismic intensity are investigated.Based on the above analysis,the established reliability model according to the reliability theory,together with seismic reliability analysis based on Monte-Carlo simulation is applied to practical analysis.The results show that the overall structure of the quayside container crane is generally unstable under rare seismic intensity,and the structure needs to be reinforced.展开更多
In this paper, the improved near crack line analysis method proposed in Refs. [1]and [2] is used to investigate a mode Ⅲ crack loaded by antiplane point forces in aninfinite plate in an elastic-perfectly plastic sol...In this paper, the improved near crack line analysis method proposed in Refs. [1]and [2] is used to investigate a mode Ⅲ crack loaded by antiplane point forces in aninfinite plate in an elastic-perfectly plastic solid. The solutions of this paper aresufficiently precise near the crack line region because. the assumptions of the smallscale yielding theory have not been used and no other assumptions have been taken.展开更多
The elastic-plastic indentation properties of materials with varying ratio of hardness to Young’s modulus(H/E) were analyzed with the finite element method. And the indentation stress fields of materials with varying...The elastic-plastic indentation properties of materials with varying ratio of hardness to Young’s modulus(H/E) were analyzed with the finite element method. And the indentation stress fields of materials with varying ratio H/E on the surface were studied by the experiment. The results show that the penetration depth, contact radius, plastic pile-up and the degree of elastic recovery depend strongly on the ratio H/E. Moreover, graphs were established to describe the relationship between the elastic-plastic indentation parameters and H/E. The established graphs can be used to predict the H/E of materials when compared with experimental data.展开更多
The stress and deformation fields near the tip of a mode-I dynamic crack steadily propagating in an elastic-perfectly plastic compressible material are considered under plane strain conditions. Within the framework of...The stress and deformation fields near the tip of a mode-I dynamic crack steadily propagating in an elastic-perfectly plastic compressible material are considered under plane strain conditions. Within the framework of infinitesimal displacement gradient theory, the material is characterized by the Von Mises yield criterion and the associated J(2) flow theory of plasticity. Through rigorous mathematical analysis, this paper eliminates the possibilities of elastic unloading and continuous asymptotic fields with singular deformation, and then constructs a fully continuous and bounded asymptotic stress and strain field. It is found that in this solution there exists a parameter phi(0) which cannot be determined by asymptotic analysis but may characterize the effect of the far field. Lastly the variations of continuous stresses, velocities and strains around the crack tip are given numerically for different values of phi(0).展开更多
A lumped masses-springs model is proposed to analyze the dynamic response of an elastic-plastic cantilever beam resulting from impact. The numerical results are in good agreement with those by finite-element approache...A lumped masses-springs model is proposed to analyze the dynamic response of an elastic-plastic cantilever beam resulting from impact. The numerical results are in good agreement with those by finite-element approaches. The simplified model can catch the most essential features of elastic-plastic response of beams; in particular, it demonstrates the effect of elastic deformation on the distribution of bending moment and energy dissipation, and provides valuable quatitative results.展开更多
The dynamic inhomogeneous finite element method is studied for use in the transient analysis of one dimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based...The dynamic inhomogeneous finite element method is studied for use in the transient analysis of one dimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based on the shape function. In order to research the advantages of this method, it is compared with the general finite element method. A linear bar element is chosen for the discretization tests of material parameters with two fictitious distributions. And, a numerical example is solved to observe the differences in the results between these two methods. Some characteristics of the dynamic inhomogeneous finite element method that demonstrate its advantages are obtained through comparison with the general finite element method. It is found that the method can be used to solve elastic wave motion problems with a large element scale and a large number of iteration steps.展开更多
Buckling-restrained braces (BRBs) have recently become popular in the United States for use as primary members of seismic lateral-force-resisting systems. A BRB is a steel brace that does not buckle in compression b...Buckling-restrained braces (BRBs) have recently become popular in the United States for use as primary members of seismic lateral-force-resisting systems. A BRB is a steel brace that does not buckle in compression but instead yields in both tension and compression. Although design guidelines for BRB applications have been developed, systematic procedures for assessing performance and quantifying reliability are still needed. This paper presents an analytical framework for assessing buckling-restrained braced frame (BRBF) reliability when subjected to seismic loads. This framework efficiently quantifies the risk of BRB failure due to low-cycle fatigue fracture of the BRB core. The procedure includes a series of components that: (1) quantify BRB demand in terms of BRB core deformation histories generated through stochastic dynamic analyses; (2) quantify the limit-state of a BRB in terms of its remaining cumulative plastic ductility capacity based on an experimental database; and (3) evaluate the probability of BRB failure, given the quantified demand and capacity, through structural reliability analyses. Parametric studies were conducted to investigate the effects of the seismic load, and characteristics of the BRB and BRBF on the probability of brace failure. In addition, fragility curves (i.e., conditional probabilities of brace failure given ground shaking intensity parameters) were created by the proposed framework. While the framework presented in this paper is applied to the assessment of BRBFs, the modular nature of the framework components allows for application to other structural components and systems.展开更多
A motor-driven linkage system with links fabricated from 3-dimensional braided composite materials was studied. A group of coupling dynamic equations of the system, including composite materials parameters, electromag...A motor-driven linkage system with links fabricated from 3-dimensional braided composite materials was studied. A group of coupling dynamic equations of the system, including composite materials parameters, electromagnetism parameters of the motor and structural parameters of the link mechanism, were established by finite element method. Based on the air-gap field of non-uniform airspace of three-phase alternating current motor caused by the vibration eccentricity of rotor, the relation of electromechanical coupling at the actual running state was analyzed. And the motor element, which defines the transverse vibration and torsional vibration of the motor as its nodal displacement, was established. Then, based on the damping element model and the expression of energy dissipation of the 3-dimentional braided composite materials, the damping matrix of the system was established by calculating each order modal damping of the mechanism.展开更多
Crack line field analysis method has become an independent method for crack elastic-plastic analysis, which greatly simplifies the complexity of crack elastic-plastic problems and overcomes the corresponding mathemati...Crack line field analysis method has become an independent method for crack elastic-plastic analysis, which greatly simplifies the complexity of crack elastic-plastic problems and overcomes the corresponding mathematical difficulty. With this method, the precise elastic-plastic solutions near crack lines for variety of crack problems can be obtained. But up to now all solutions obtained by this method were for different concrete problems, no general steps and no general form of matching equations near crack line are given out. With crack line analysis method, this paper proposes the general steps of elastic plastic analysis near crack line for mode I crack in elastic-perfectly plastic solids under plane stress condition, and in turn given out the solving process and result for a specific problem.展开更多
Impact processes between flexible bodies often lead to local stress concentration and wave propagation of high frequency. Therefore, the modeling of flexible multibody systems involving impact should consider the loca...Impact processes between flexible bodies often lead to local stress concentration and wave propagation of high frequency. Therefore, the modeling of flexible multibody systems involving impact should consider the local plastic deformation and the strict requirements of the spatial discretization. Owing to the nonlinearity of the stiffness matrix, the reduction of the element number is extremely important. For the contact-impact problem, since different regions have different requirements regarding the element size, a new subregion mesh method is proposed to reduce the number of the unnecessary elements. A dynamic model for flexible multibody systems with elastic-plastic contact impact is established based on a floating frame of reference formulation and complete Lagrange incremental nonlinear finite-element method to investigate the effect of the elastic-plastic deformation as well as spatial discretization. Experiments on the impact between two bodies are carried out to validate the correctness of the elastic-plastic model. The proposed formulation is applied to a slider-crank system with elastic-plastic impact.展开更多
Crack line analysis is an effective way to solve elastic-plastic crack problems. Application of the method does not need the traditional small-scale yielding conditions and can obtain sufficiently accurate solutions n...Crack line analysis is an effective way to solve elastic-plastic crack problems. Application of the method does not need the traditional small-scale yielding conditions and can obtain sufficiently accurate solutions near the crack line. To address mode- Ⅲ crack problems under the perfect elastic-plastic condition, matching procedures of the crack line analysis method axe summarized and refined to give general forms and formulation steps of plastic field, elastic-plastic boundary, and elastic-plastic matching equations near the crack line. The research unifies mode-III crack problems under different conditions into a problem of determining four integral constants with four matching equations. An example is given to verify correctness, conciseness, and generality of the procedure.展开更多
基金the National Natural Science Foundation of China(No.50178916,No.19732020 and No.19872016)the National Key Basic lteseareh Special Foundation(No.G1999032805)+1 种基金the Special Funds for Major State Basic Researeh Projectsthe Foundation for University Key Teachers by the Ministry of Education of China
文摘A new algorithm for the solution of quadratic programming problemsis put forward in terms of the mixed energy theory and is furtherused for the incremental solution of elastic-plastic trussstructures. The method proposed is different from the traditionalone, for which the unknown variables are selected just in one classsuch as displacements or stresses. The present method selects thevariables in the mixed form with both displacement and stress. As themethod is established in the hybrid space, the information found inthe previous incremental step can be used for the solution of thepresent step, making the algorithm highly effi- cient in thenumerical solution process of quadratic programming problems. Theresults obtained in the exm- ples of the elastic-plastic solution ofthe truss structures verify what has been predicted in thetheoretical anal- ysis.
文摘Short-leg shear wall structures are a new form of building structure that combine the merits of both frame and shear wall structures. Its architectural features, structure bearing and engineering cost are reasonable. To analyze the elastic-plastic response of a short-leg shear wall structure during an earthquake, this study modified the multiple-vertical-rod element model of the shear wall, considered the shear lag effect and proposed a multiple-vertical-rod element coupling beam model with a new local stiffness domain. Based on the principle of minimum potential energy and the variational principle, the stiffness matrixes of a short-leg shear wall and a coupling beam are derived in this study. Furthermore, the bending shear correlation for the analysis of different parameters to describe the structure, such as the beam height to span ratio, short-leg shear wall height to thickness ratio, and steel ratio are introduced. The results show that the height to span ratio directly affects the structural integrity; and the short-leg shear wall height to thickness ratio should be limited to a range of approximately 6.0 to 7.0. The design of short-leg shear walls should be in accordance with the "strong wall and weak beam" principle.
文摘In this paper, the improved near crack line analysis method proposed in Refs. [1] and [2] is used to investigate a center crack loaded by two pairs of antiplane point forces in a finite plate in an elastic-perfectly plastic solid. And the analytical solutions are obtained, that is elastic-plastic stress fields near the crack line and the law that the length of the plastic zone along the crack line is varied with an external loads tr,ld the bearing capacity of a finite plate with a center crack. The results of this paper are sufficiently precise near the crack line, because the assumptions of the small scale yielding theory have not been used and no other assumptions have been taken.
基金support from the Exploring Youth Project of Zhejiang Natural Science Foundation (Grant No.LQ24E080009)the Key Project of Natural Science Foundation of Zhejiang Province (Grant No.LXZ22E080001)the National Natural Science Foundation of China (Grant No.52108347).
文摘A rigorous analytical model is developed for simulating the vibration behaviors of large-diameter openended pipe piles(OEPPs)and surrounding soil undergoing high-strain impact loading.To describe the soil behavior,the soil along pile shaft is divided into slip and nonslip zones and the base soil is modeled as a fictitious-soil pile(FSP)to account for the wave propagation in the soil.True soil properties are adopted and slippage at the pile-soil interface is considered,allowing realistic representation of largediameter OEPP mechanics.The developed model is validated by comparing with conventional models and finite element method(FEM).It is further used to successfully simulate and interpret the behaviors of a steel OEPP during the offshore field test.It is found that the variation in the vertical vibrations of shaft soil along radial direction is significant for large-diameter OEPPs,and the velocity amplitudes of the internal and external soil attenuate following different patterns.The shaft soil motion may not attenuate with depth due to the soil slippage,while the wave attenuation at base soil indicates an influence depth,with a faster attenuation rate than that in the pile.The findings from the current study should aid in simulating the vibration behaviors of large-diameter OEPP-soil system under high-strain dynamic loading.
基金the National Natural Science Foundation of China.
文摘Based on the minimum principle of acceleration in the elastic-plastic continua under finite def ormation, the dynamic response of an elastic-perfectly plastic pin-ended beam subjected to rectangular impulse loading is studied with the help of a numerical approach. The calculated results once again show the anomalous behavior of the beam during its response process, which was previously found in [1]. By carefully analyzing the instantaneous distribution of the bending moment, the membrane force, the curvature and displacement during the response process, it is concluded that the interactive effect between the geometry and materials nonlinearities of the structure is the key reason for leading to the anomalous behavior. This will be helpful for clarifying some misunderstandings in explaining the problem before.
基金Supported by Zhejiang Provincial Natural Science Foundation of China (Grant No. LR18E050003)National Natural Science Foundation of China (Grant Nos. 51975523,51905481)+1 种基金Postdoctoral Preferred Funding Project of Zhejiang Province (Grant No. zj2019019)Open Foundation of the Key Laboratory of E&M,Ministry of Education&Zhejiang Province (Grant No. EM2019120102)
文摘To study the characteristics of the 5-prismatic–spherical–spherical(PSS)/universal–prismatic–universal(UPU)parallel mechanism with elastically active branched chains,the dynamics modeling and solutions of the parallel mechanism were investigated.First,the active branched chains and screw sliders were considered as spatial beam elements and plane beam element models,respectively,and the dynamic equations of each element model were derived using the Lagrange method.Second,the equations of the 5-PSS/UPU parallel mechanism were obtained according to the kinematic coupling relationship between the active branched chains and moving platform.Finally,based on the parallel mechanism dynamic equations,the natural frequency distribution of the 5-PSS/UPU parallel mechanism in the working space and elastic displacement of the moving platform were obtained.The results show that the natural frequency of the 5-PSS/UPU parallel mechanism under a given motion situation is greater than its operating frequency.The maximum position error is -0.096 mm in direction Y,and the maximum orientation error is -0.29°around the X-axis.The study provides important information for analyzing the dynamic performance,dynamic optimization design,and dynamic control of the 5-PSS/UPU parallel mechanism with elastically active branched chains.
基金Projects(50574091,50774084) supported by the National Natural Science Foundation of China
文摘A feasible method to improve the reliability and processing efficiency of large vibrating screen via the application of an elastic screen surface with multiple attached substructures (ESSMAS) was proposed. In the ESSMAS, every screen rod, with ends embedded into elastomer, is coupled to the main screen structure in a relatively flexible manner. The theoretical analysis was conducted, which consists of establishing dynamic model promoted from the fuzzy structure theory as well as calculating for the equivalent stiffness of each attached structure. According to the numerical simulation using the NEWMARK-fl integration method, this assembling pattern significantly leads to the screen surface/rod having larger vibration intensity than that of the corresponding position on screen structure, which specifically, with an averaged acceleration amplitude increasing ratio of 11.37% in theoretical analysis and 20.27% in experimental test. The experimental results, within a tolerant error, also confirm the established model and demonstrate the feasibility of ESSMAS.
基金Project(51221462)supported by the National Natural Science Foundation of China for Innovative Research GroupProject(20120095110001)supported by the Doctoral Fund of Ministry of Education of China+1 种基金Project supported by the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions,ChinaProject(CXJJ201303)supported by the Innovation Foundation of Xuyi Research and Development Center of Mining Equipment and Materials,China University of Mining and Technology,China
文摘A feasible method was proposed to improve the vibration intensity of screen surface via application of a new type elastic screen surface with multi degree of freedom(NTESSMDF). In the NTESSMDF, the primary robs were coupled to the main screen structure with ends embedded into the elastomers, and the secondary robs were attached to adjacent two primary robs with elastic bands. The dynamic model of vibrating screen with NTESSMDF was established based on Lagrange's equation and the equivalent stiffnesses of the elastomer and elastic band were calculated. According to numerical simulation using the 4th order Runge-Kutta method, the vibration intensity of screen surface can be enhanced substantially with an averaged acceleration amplitude increasing ratio of 72.36%. The primary robs and secondary robs vibrate inversely in steady state, which would result in the friability of materials and avoid stoppage. The experimental results validate the dynamic characteristics with acceleration amplitude rising by62.93% on average, which demonstrates the feasibility of NTESSMDF.
文摘The characterization and testing methods of the dynamic fractureinitiation toughness of elas- tic-plastic materials under tensileimpact are studied. By using the self-designed bar-bar tensile impactappa- ratus, a novel test method for studying dynamicfracture-initiation ahs been proposed based on the one-di- mensionaltest principle. The curve of average load v. s. displacement (P-δ)is smooth until unstable crack propagation, and the kinetic energywhich does not contribute to the crack growth can be removed fromtotal work done by external-force to the specimen.
基金supported by National High Technology Research and Development Program 863 Plan (No. 2009AA043000)
文摘Quayside container crane is a kind of huge dimension steel structure,which is the major equipment used for handling container at modern ports.With the aim to validate the safety and reliability of the crane under seismic loads,besides conventional analysis,elastic-plastic time history analysis under rare seismic intensity is carried out.An ideal finite element(FEM) elastic-plastic mechanical model of the quayside container crane is presented by using ANSYS codes.Furthermore,according to elastic-plastic time history analysis theory,deformation,stress and damage pattern of the structure under rare seismic intensity are investigated.Based on the above analysis,the established reliability model according to the reliability theory,together with seismic reliability analysis based on Monte-Carlo simulation is applied to practical analysis.The results show that the overall structure of the quayside container crane is generally unstable under rare seismic intensity,and the structure needs to be reinforced.
文摘In this paper, the improved near crack line analysis method proposed in Refs. [1]and [2] is used to investigate a mode Ⅲ crack loaded by antiplane point forces in aninfinite plate in an elastic-perfectly plastic solid. The solutions of this paper aresufficiently precise near the crack line region because. the assumptions of the smallscale yielding theory have not been used and no other assumptions have been taken.
基金Science Research Foundation of Shanghai Municipal Education Commission (No.06VZ004)
文摘The elastic-plastic indentation properties of materials with varying ratio of hardness to Young’s modulus(H/E) were analyzed with the finite element method. And the indentation stress fields of materials with varying ratio H/E on the surface were studied by the experiment. The results show that the penetration depth, contact radius, plastic pile-up and the degree of elastic recovery depend strongly on the ratio H/E. Moreover, graphs were established to describe the relationship between the elastic-plastic indentation parameters and H/E. The established graphs can be used to predict the H/E of materials when compared with experimental data.
基金The present work is supported by the National Natural Science Foundation of China
文摘The stress and deformation fields near the tip of a mode-I dynamic crack steadily propagating in an elastic-perfectly plastic compressible material are considered under plane strain conditions. Within the framework of infinitesimal displacement gradient theory, the material is characterized by the Von Mises yield criterion and the associated J(2) flow theory of plasticity. Through rigorous mathematical analysis, this paper eliminates the possibilities of elastic unloading and continuous asymptotic fields with singular deformation, and then constructs a fully continuous and bounded asymptotic stress and strain field. It is found that in this solution there exists a parameter phi(0) which cannot be determined by asymptotic analysis but may characterize the effect of the far field. Lastly the variations of continuous stresses, velocities and strains around the crack tip are given numerically for different values of phi(0).
基金The project is supported by National Natural Science Foundation of China
文摘A lumped masses-springs model is proposed to analyze the dynamic response of an elastic-plastic cantilever beam resulting from impact. The numerical results are in good agreement with those by finite-element approaches. The simplified model can catch the most essential features of elastic-plastic response of beams; in particular, it demonstrates the effect of elastic deformation on the distribution of bending moment and energy dissipation, and provides valuable quatitative results.
基金the Fundamental Research Funds for the Central Universities under Grant No.HEUCFZ1125National Natural Science Foundation of China under Grant No.10972064
文摘The dynamic inhomogeneous finite element method is studied for use in the transient analysis of one dimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based on the shape function. In order to research the advantages of this method, it is compared with the general finite element method. A linear bar element is chosen for the discretization tests of material parameters with two fictitious distributions. And, a numerical example is solved to observe the differences in the results between these two methods. Some characteristics of the dynamic inhomogeneous finite element method that demonstrate its advantages are obtained through comparison with the general finite element method. It is found that the method can be used to solve elastic wave motion problems with a large element scale and a large number of iteration steps.
基金Federal Highway Administration Under Grant No. DDEGRD-06-X-00408
文摘Buckling-restrained braces (BRBs) have recently become popular in the United States for use as primary members of seismic lateral-force-resisting systems. A BRB is a steel brace that does not buckle in compression but instead yields in both tension and compression. Although design guidelines for BRB applications have been developed, systematic procedures for assessing performance and quantifying reliability are still needed. This paper presents an analytical framework for assessing buckling-restrained braced frame (BRBF) reliability when subjected to seismic loads. This framework efficiently quantifies the risk of BRB failure due to low-cycle fatigue fracture of the BRB core. The procedure includes a series of components that: (1) quantify BRB demand in terms of BRB core deformation histories generated through stochastic dynamic analyses; (2) quantify the limit-state of a BRB in terms of its remaining cumulative plastic ductility capacity based on an experimental database; and (3) evaluate the probability of BRB failure, given the quantified demand and capacity, through structural reliability analyses. Parametric studies were conducted to investigate the effects of the seismic load, and characteristics of the BRB and BRBF on the probability of brace failure. In addition, fragility curves (i.e., conditional probabilities of brace failure given ground shaking intensity parameters) were created by the proposed framework. While the framework presented in this paper is applied to the assessment of BRBFs, the modular nature of the framework components allows for application to other structural components and systems.
基金Project(50175031) supported by the National Natural Science Foundation of China
文摘A motor-driven linkage system with links fabricated from 3-dimensional braided composite materials was studied. A group of coupling dynamic equations of the system, including composite materials parameters, electromagnetism parameters of the motor and structural parameters of the link mechanism, were established by finite element method. Based on the air-gap field of non-uniform airspace of three-phase alternating current motor caused by the vibration eccentricity of rotor, the relation of electromechanical coupling at the actual running state was analyzed. And the motor element, which defines the transverse vibration and torsional vibration of the motor as its nodal displacement, was established. Then, based on the damping element model and the expression of energy dissipation of the 3-dimentional braided composite materials, the damping matrix of the system was established by calculating each order modal damping of the mechanism.
文摘Crack line field analysis method has become an independent method for crack elastic-plastic analysis, which greatly simplifies the complexity of crack elastic-plastic problems and overcomes the corresponding mathematical difficulty. With this method, the precise elastic-plastic solutions near crack lines for variety of crack problems can be obtained. But up to now all solutions obtained by this method were for different concrete problems, no general steps and no general form of matching equations near crack line are given out. With crack line analysis method, this paper proposes the general steps of elastic plastic analysis near crack line for mode I crack in elastic-perfectly plastic solids under plane stress condition, and in turn given out the solving process and result for a specific problem.
基金supported by the National Natural Science Foundation of China (Grants 11132007, 11272203)
文摘Impact processes between flexible bodies often lead to local stress concentration and wave propagation of high frequency. Therefore, the modeling of flexible multibody systems involving impact should consider the local plastic deformation and the strict requirements of the spatial discretization. Owing to the nonlinearity of the stiffness matrix, the reduction of the element number is extremely important. For the contact-impact problem, since different regions have different requirements regarding the element size, a new subregion mesh method is proposed to reduce the number of the unnecessary elements. A dynamic model for flexible multibody systems with elastic-plastic contact impact is established based on a floating frame of reference formulation and complete Lagrange incremental nonlinear finite-element method to investigate the effect of the elastic-plastic deformation as well as spatial discretization. Experiments on the impact between two bodies are carried out to validate the correctness of the elastic-plastic model. The proposed formulation is applied to a slider-crank system with elastic-plastic impact.
基金supported by the National Natural Science Foundation of China (No.10672196)
文摘Crack line analysis is an effective way to solve elastic-plastic crack problems. Application of the method does not need the traditional small-scale yielding conditions and can obtain sufficiently accurate solutions near the crack line. To address mode- Ⅲ crack problems under the perfect elastic-plastic condition, matching procedures of the crack line analysis method axe summarized and refined to give general forms and formulation steps of plastic field, elastic-plastic boundary, and elastic-plastic matching equations near the crack line. The research unifies mode-III crack problems under different conditions into a problem of determining four integral constants with four matching equations. An example is given to verify correctness, conciseness, and generality of the procedure.