We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implemen...We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implementedthe charge self-consistent DFT+DMFT formalism by interfacing a full-potential all-electron DFT code with threehybridization expansion-based continuous-time quantum Monte Carlo impurity solvers.The benchmarks on several 3d,4fand 5f strongly correlated electron systems validated our formalism and implementation.Furthermore,within the LCANOframework,our formalism is general and the code architecture is extensible,so it can work as a bridge merging differentLCNAO DFT packages and impurity solvers to do charge self-consistent DFT+DMFT calculations.展开更多
The realization of 100%polarized topologicalWeyl fermions in half-metallic ferromagnets is of particular importance for fundamental research and spintronic applications.Here,we theoretically investigate the electronic...The realization of 100%polarized topologicalWeyl fermions in half-metallic ferromagnets is of particular importance for fundamental research and spintronic applications.Here,we theoretically investigate the electronic and topological properties of the zinc-blende compound VAs,which was deemed as a half-metallic ferromagnet related to dynamic correlations.Based on the combination of density functional theory and dynamical mean field theory,we uncover that the half-metallic ferromagnet VAs exhibits attractive Weyl semimetallic behaviors which are very close to the Fermi level in the DFT+U regime with effect U values ranging from 1.5 eV to 2.5 eV.Meanwhile,we also investigate the magnetization-dependent topological properties;the results show that the change of magnetization directions only slightly affects the positions of Weyl points,which is attributed to the weak spin–orbital coupling effects.The topological surface states of VAs projected on semi-infinite(001)and(111)surfaces are investigated.The Fermi arcs of all Weyl points are clearly visible on the projected Fermi surfaces.Our findings suggest that VAs is a fully spin-polarized Weyl semimetal with many-body correlated effects in the effective U values range from 1.5 eV to 2.5 eV.展开更多
This paper proposes an impurity solver for the dynamical mean field theory (DMFT) study of the Mott insulators, which is based on the second order perturbation of the hybridization function. After careful benchmarki...This paper proposes an impurity solver for the dynamical mean field theory (DMFT) study of the Mott insulators, which is based on the second order perturbation of the hybridization function. After careful benchmarking with quantum Monte Carlo results on the anti-ferromagnetic phase of the Hubbard model, it concludes that this impurity solver can capture the main physical features in the strong coupling regime and can be a very useful tool for the LDA (local density approximation) + DMFT studies of the Mort insulators with long range order.展开更多
A combination of the iterative perturbation theory (ITP) of the dynamical mean field theory (DMFT) and coherentpotential approximation (CPA) is generalized to the double exchange model with orbital degeneracy. T...A combination of the iterative perturbation theory (ITP) of the dynamical mean field theory (DMFT) and coherentpotential approximation (CPA) is generalized to the double exchange model with orbital degeneracy. The Hubbard interaction and the off-diagonal components for the hopping matrix tij^mn(m ≠ n) are considered in our calculation of spectrum and optical conductivity. The numerical results show that the effects of the non-diagonal hopping matrix elements are important.展开更多
We investigate the effect of interaction, temperature, and anisotropic parameter on the quantum phase transitions in an anisotropic square-octagon lattice with fermions under the framework of the single band Hubbard m...We investigate the effect of interaction, temperature, and anisotropic parameter on the quantum phase transitions in an anisotropic square-octagon lattice with fermions under the framework of the single band Hubbard model through using the combination of cellular dynamical mean field theory and a continuous time Monte Carlo algorithm. The competition between interaction and temperature shows that with the increase of the anisotropic parameter, the critical on-site repulsive interaction for the metal-insulator transition increases for fixed temperature. The interaction-anisotropic parameter phase diagram reveals that with the decrease of temperature, the critical anisotropic parameter for the Mott transition will increase for fixed interaction cases.展开更多
Designing the kinetic pathways of assembling macromolecules such as block copolymers and DNA strands is crucial not only for an achievement of thermodynamically equilibrium nanostructures over macroscopic areas,but al...Designing the kinetic pathways of assembling macromolecules such as block copolymers and DNA strands is crucial not only for an achievement of thermodynamically equilibrium nanostructures over macroscopic areas,but also for a better understanding of formation process of higher-level superstructures where well-tailored assemblies act as mesoscopic building units.Theoretical analysis and computer simulations provide excellent opportunities to microscopically reveal the kinetics and mechanism of structural evolution as well as the collective behaviors of building units.In this perspective,we summarize our efforts of theoretical and computational modelling to understand the long-range ordering mechanisms and the organization kinetics of assembling macromolecules along designable pathways.First,we present the computational modelling and recent strategies of designable pathways for the achievement of long-range ordering.Then,from the computational views,we give the applications of pathway-designed strategies to explore the ordering mechanism and kinetics in the course of structural evolution,covering the block copolymers and their nanocomposites under zone annealing as well as the hierarchical self-assembly of mesoscopic building units(e.g.,patchy micelles and DNA-functionalized nanoparticles).Finally,we outlook future directions in the field of designable pathways for the achievement of long-range ordered nanostructures.This perspective could promote further efforts towards the wide applications of theoretical and computational modelling in the construction of soft hybrid metamaterials.展开更多
Dynamic self-consistent field theory(DSCFT)is a fruitful approach for modeling the structural evolution and collective kinetics for a wide variety of multicomponent polymers.However,solving a set of DSCFT equations re...Dynamic self-consistent field theory(DSCFT)is a fruitful approach for modeling the structural evolution and collective kinetics for a wide variety of multicomponent polymers.However,solving a set of DSCFT equations remains daunting because of high computational demand.Herein,a machine learning method,integrating low-dimensional representations of microstructures and long short-term memory neural networks,is used to accelerate the predictions of structural evolution of multicomponent polymers.It is definitively demonstrated that the neural-network-trained surrogate model has the capability to accurately forecast the structural evolution of homopolymer blends as well as diblock copolymers,without the requirement of“on-the-fly”solution of DSCFT equations.Importantly,the data-driven method can also infer the latent growth laws of phase-separated microstructures of multicomponent polymers through simply using a few of time sequences from their past,without the prior knowledge of the governing dynamics.Our study exemplifies how the machine-learning-accelerated method can be applied to understand and discover the physics of structural evolution in the complex polymer systems.展开更多
文摘We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implementedthe charge self-consistent DFT+DMFT formalism by interfacing a full-potential all-electron DFT code with threehybridization expansion-based continuous-time quantum Monte Carlo impurity solvers.The benchmarks on several 3d,4fand 5f strongly correlated electron systems validated our formalism and implementation.Furthermore,within the LCANOframework,our formalism is general and the code architecture is extensible,so it can work as a bridge merging differentLCNAO DFT packages and impurity solvers to do charge self-consistent DFT+DMFT calculations.
基金the National Natural Science Foun-dation of China(Grant Nos.12204074,12222402,92365101,and 12347101)the Natural Science Foundation of Chong-ging(Grant No.CSTB2023NSCQ-JQX0024).
文摘The realization of 100%polarized topologicalWeyl fermions in half-metallic ferromagnets is of particular importance for fundamental research and spintronic applications.Here,we theoretically investigate the electronic and topological properties of the zinc-blende compound VAs,which was deemed as a half-metallic ferromagnet related to dynamic correlations.Based on the combination of density functional theory and dynamical mean field theory,we uncover that the half-metallic ferromagnet VAs exhibits attractive Weyl semimetallic behaviors which are very close to the Fermi level in the DFT+U regime with effect U values ranging from 1.5 eV to 2.5 eV.Meanwhile,we also investigate the magnetization-dependent topological properties;the results show that the change of magnetization directions only slightly affects the positions of Weyl points,which is attributed to the weak spin–orbital coupling effects.The topological surface states of VAs projected on semi-infinite(001)and(111)surfaces are investigated.The Fermi arcs of all Weyl points are clearly visible on the projected Fermi surfaces.Our findings suggest that VAs is a fully spin-polarized Weyl semimetal with many-body correlated effects in the effective U values range from 1.5 eV to 2.5 eV.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10334090,10425418,60576058)the National Basic Research Program of China(Grant No.2007CB925000)
文摘This paper proposes an impurity solver for the dynamical mean field theory (DMFT) study of the Mott insulators, which is based on the second order perturbation of the hybridization function. After careful benchmarking with quantum Monte Carlo results on the anti-ferromagnetic phase of the Hubbard model, it concludes that this impurity solver can capture the main physical features in the strong coupling regime and can be a very useful tool for the LDA (local density approximation) + DMFT studies of the Mort insulators with long range order.
基金Project supported by the National Natural Science Foundation of China (Grant No 60476047)the Natural Science Foundation of Henan Province, China (Grant No 0411011700)
文摘A combination of the iterative perturbation theory (ITP) of the dynamical mean field theory (DMFT) and coherentpotential approximation (CPA) is generalized to the double exchange model with orbital degeneracy. The Hubbard interaction and the off-diagonal components for the hopping matrix tij^mn(m ≠ n) are considered in our calculation of spectrum and optical conductivity. The numerical results show that the effects of the non-diagonal hopping matrix elements are important.
基金supported by the National Natural Science Foundation of China(Grant Nos.11174169,11234007,and 51471093)
文摘We investigate the effect of interaction, temperature, and anisotropic parameter on the quantum phase transitions in an anisotropic square-octagon lattice with fermions under the framework of the single band Hubbard model through using the combination of cellular dynamical mean field theory and a continuous time Monte Carlo algorithm. The competition between interaction and temperature shows that with the increase of the anisotropic parameter, the critical on-site repulsive interaction for the metal-insulator transition increases for fixed temperature. The interaction-anisotropic parameter phase diagram reveals that with the decrease of temperature, the critical anisotropic parameter for the Mott transition will increase for fixed interaction cases.
基金financially supported by the National Natural Science Foundation of China(Nos.22073028 and 21873029)。
文摘Designing the kinetic pathways of assembling macromolecules such as block copolymers and DNA strands is crucial not only for an achievement of thermodynamically equilibrium nanostructures over macroscopic areas,but also for a better understanding of formation process of higher-level superstructures where well-tailored assemblies act as mesoscopic building units.Theoretical analysis and computer simulations provide excellent opportunities to microscopically reveal the kinetics and mechanism of structural evolution as well as the collective behaviors of building units.In this perspective,we summarize our efforts of theoretical and computational modelling to understand the long-range ordering mechanisms and the organization kinetics of assembling macromolecules along designable pathways.First,we present the computational modelling and recent strategies of designable pathways for the achievement of long-range ordering.Then,from the computational views,we give the applications of pathway-designed strategies to explore the ordering mechanism and kinetics in the course of structural evolution,covering the block copolymers and their nanocomposites under zone annealing as well as the hierarchical self-assembly of mesoscopic building units(e.g.,patchy micelles and DNA-functionalized nanoparticles).Finally,we outlook future directions in the field of designable pathways for the achievement of long-range ordered nanostructures.This perspective could promote further efforts towards the wide applications of theoretical and computational modelling in the construction of soft hybrid metamaterials.
基金financially supported by the National Natural Science Foundation of China(Nos.22073028,21873029 and 22073004)the Fundamental Research Funds for the Central Universities。
文摘Dynamic self-consistent field theory(DSCFT)is a fruitful approach for modeling the structural evolution and collective kinetics for a wide variety of multicomponent polymers.However,solving a set of DSCFT equations remains daunting because of high computational demand.Herein,a machine learning method,integrating low-dimensional representations of microstructures and long short-term memory neural networks,is used to accelerate the predictions of structural evolution of multicomponent polymers.It is definitively demonstrated that the neural-network-trained surrogate model has the capability to accurately forecast the structural evolution of homopolymer blends as well as diblock copolymers,without the requirement of“on-the-fly”solution of DSCFT equations.Importantly,the data-driven method can also infer the latent growth laws of phase-separated microstructures of multicomponent polymers through simply using a few of time sequences from their past,without the prior knowledge of the governing dynamics.Our study exemplifies how the machine-learning-accelerated method can be applied to understand and discover the physics of structural evolution in the complex polymer systems.