On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the ef...On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the effect of spacing between reefs on flow scale and the flow state,were analyzed.Results indicate upwelling,slow flow,and eddy around a single reef.Maximum velocity,height,and volume of upwelling in front of a single reef were positively correlated with inflow velocity.The length and volume of slow flow increased with the increase in inflow velocity.Eddies were present both inside and backward,and vorticity was positively correlated with inflow velocity.Space between reefs had a minor influence on the maximum velocity and height of upwelling.With the increase in space from 0.5 L to 1.5 L(L is the reef lehgth),the length of slow flow in the front and back of the combined reefs increased slightly.When the space was 2.0 L,the length of the slow flow decreased.In four different spaces,eddies were present inside and at the back of each reef.The maximum vorticity was negatively correlated with space from 0.5 L to 1.5 L,but under 2.0 L space,the maximum vorticity was close to the vorticity of a single reef under the same inflow velocity.展开更多
This study employs the smoothed particle hydrodynamics–finite element method(SPH–FEM) coupling numerical method to investigate the impact of debris flow on reinforced concrete(RC)-frame buildings. The methodology co...This study employs the smoothed particle hydrodynamics–finite element method(SPH–FEM) coupling numerical method to investigate the impact of debris flow on reinforced concrete(RC)-frame buildings. The methodology considers the variables of debris flow depth and velocity and introduces the intensity index IDV(IDV = DV) to evaluate three different levels of debris flow impact intensity. The primary focus of this study is to investigate the dynamic response and failure mechanism of RC-frame buildings under debris flow impact, including structural failure patterns, impact force and column displacement. The results show that under a highintensity impact, a gradual collapse process of the RCframe building can be observed, and the damage mode of the frame column reflects shear failure or plastic hinge failure mechanism. First, the longitudinal infill walls are damaged owing to their low out-of-plane flexural capacity;the critical failure intensity index IDV value is approximately 7.5 m2/s. The structure cannot withstand debris flows with an intensity index IDV greater than 16 m2/s, and it is recommended that the peak impact force should not exceed 2100 k N. The impact damage ability of debris flow on buildings mostly originates from the impact force of the frontal debris flow, with the impact force of the debris flow body being approximately 42% lower than that of the debris flow head. Finally, a five-level classification system for evaluating the damage status of buildings is proposed based on the numerical simulation and investigation results of the disaster site.展开更多
Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the ...Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the nonlinear dynamic behaviors of viscoelastic fluids.However,traditional grid-based multiscale methods are confined to simple viscoelastic flows with short relaxation time,and there is a lack of uniform multiscale scheme available for coupling different solvers in the simulations of viscoelastic fluids.In this paper,a universal multiscale method coupling an improved smoothed particle hydrodynamics(SPH)and multiscale universal interface(MUI)library is presented for viscoelastic flows.The proposed multiscale method builds on an improved SPH method and leverages the MUI library to facilitate the exchange of information among different solvers in the overlapping domain.We test the capability and flexibility of the presented multiscale method to deal with complex viscoelastic flows by solving different multiscale problems of viscoelastic flows.In the first example,the simulation of a viscoelastic Poiseuille flow is carried out by two coupled improved SPH methods with different spatial resolutions.The effects of exchanging different physical quantities on the numerical results in both the upper and lower domains are also investigated as well as the absolute errors in the overlapping domain.In the second example,the complex Wannier flow with different Weissenberg numbers is further simulated by two improved SPH methods and coupling the improved SPH method and the dissipative particle dynamics(DPD)method.The numerical results show that the physical quantities for viscoelastic flows obtained by the presented multiscale method are in consistence with those obtained by a single solver in the overlapping domain.Moreover,transferring different physical quantities has an important effect on the numerical results.展开更多
During long-term operation,the performance of obstacles would be changed due to the material accumulating upslope the obstacle.However,the effects of retained material on impact,overflow and landing dynamics of granul...During long-term operation,the performance of obstacles would be changed due to the material accumulating upslope the obstacle.However,the effects of retained material on impact,overflow and landing dynamics of granular flow have not yet been elucidated.To address this gap,physical flume tests and discrete element simulations are conducted considering a range of normalized deposition height h0/H from 0 to 1,where h0 and H represent the deposition height and obstacle height,respectively.An analytical model is modified to evaluate the flow velocity and flow depth after interacting with the retained materials,which further serve to calculate the peak impact force on the obstacle.Notably,the computed impact forces successfully predict the experimental results when a≥25°.In addition,the results indicate that a higher h0/H leads to a lower dynamic impact force,a greater landing distance L,and a larger landing coefficient Cr,where Cr is the ratio of slope-parallel component of landing velocity to flow velocity just before landing.Compared to the existing overflow model,the measured landing distance L is underestimated by up to 30%,and therefore it is insufficient for obstacle design when there is retained material.Moreover,the recommended Cr in current design practice is found to be nonconservative for estimating the landing velocity of geophysical flow.This study provides insightful scientific basis for designing obstacles with deposition.展开更多
Shear-thinning fluids have been widely used in microfluidic systems,but their internal flow mechanism is still unclear.Therefore,in this paper,molecular dynamics simulations are used to study the laminar flow of shear...Shear-thinning fluids have been widely used in microfluidic systems,but their internal flow mechanism is still unclear.Therefore,in this paper,molecular dynamics simulations are used to study the laminar flow of shear-thinning fluid in a microchannel.We validated the feasibility of our simulation method by evaluating the mean square displacement and Reynolds number of the solution layers.The results show that the change rule of the fluid system's velocity profile and interaction energy can reflect the shear-thinning characteristics of the fluids.The velocity profile resembles a top-hat shape,intensifying as the fluid's power law index decreases.The interaction energy between the wall and the fluid decreases gradually with increasing velocity,and a high concentration of non-Newtonian fluid reaches a plateau sooner.Moreover,the velocity profile of the fluid is related to the molecule number density distribution and their values are inversely proportional.By analyzing the radial distribution function,we found that the hydrogen bonds between solute and water molecules weaken with the increase in velocity.This observation offers an explanation for the shear-thinning phenomenon of the non-Newtonian flow from a micro perspective.展开更多
Combining the detached eddy simulation(DES)method and Ffowcs Williams-Hawkings(FW-H)equation,the effect of bogie cavity end wall inclination on the flow field and aerodynamic noise in the bogie region is numerically s...Combining the detached eddy simulation(DES)method and Ffowcs Williams-Hawkings(FW-H)equation,the effect of bogie cavity end wall inclination on the flow field and aerodynamic noise in the bogie region is numerically studied.First,the simulation is conducted based on a simplified cavity-bogie model,including five cases with different inclination angles of the front and rear walls of the cavity.By comparing and analyzing the flow field and acoustic results of the five cases,the influence of the regularity and mechanism of the bogie cavity end wall inclination on the flow field and the aerodynamic noise of the bogie region are revealed.Then,the noise reduction strategy determined by the results of the simplified cavity-bogie model is applied to a three-car marshaling train model to verify its effectiveness when applied to the real train.The results reveal that the forward inclination of the cavity front wall enlarges the influence area of shear vortex structures formed at the leading edge of the cavity and intensifies the interaction between the vortex structures and the front wheelset,frontmotor,and front gearbox,resulting in the increase of the aerodynamic noise generated by the bogie itself.The backward inclination of the cavity rear wall is conducive to guiding the vortex structures flow out of the cavity and weakening the interaction between the shear vortex structures and the cavity rear wall,leading to the reduction of the aerodynamic noise generated by the bogie cavity.Inclining the rear end wall of the foremost bogie cavity of the head car is a feasible aerodynamic noise reduction measure for high-speed trains.展开更多
The boulder impact force in debris flow is generally calculated by static methods such as the cantilever beam models.However,these methods cannot describe the dynamic scenario of boulder collision on structures,so the...The boulder impact force in debris flow is generally calculated by static methods such as the cantilever beam models.However,these methods cannot describe the dynamic scenario of boulder collision on structures,so the inertia and damping effects of the structures are not involved causing an overestimation on the boulder impact force.In order to address this issue,a dynamic-based model for calculating the boulder impact force of a debris flow was proposed in this study,and the dynamic characteristics of a cantilever beam with multiple degrees of freedom under boulder collision were investigated.By using the drop-weight method to simulate boulders within debris flow,seven experiments of drop-weight impacting the cantilever beam were used to calibrate the error of the dynamicbased model.Results indicate that the dynamic-based model is able to reconstruct the impact force history on the cantilever beam during impact time and the error of dynamic-based model is 15.3%in calculating boulder impact force,significantly outperforming the cantilever beam model’s error of 285%.Therefore,the dynamic-based model can overcome the drawbacks of the static-based models and provide a more reliable theoretical foundation for the engineering design of debris flow control structures.展开更多
Investigating the ignition response of nitrate ester plasticized polyether(NEPE) propellant under dynamic extrusion loading is of great significant at least for two cases. Firstly, it helps to understand the mechanism...Investigating the ignition response of nitrate ester plasticized polyether(NEPE) propellant under dynamic extrusion loading is of great significant at least for two cases. Firstly, it helps to understand the mechanism and conditions of unwanted ignition inside charged propellant under accident stimulus.Secondly, evaluates the risk of a shell crevice in a solid rocket motor(SRM) under a falling or overturning scene. In the present study, an innovative visual crevice extrusion experiment is designed using a dropweight apparatus. The dynamic responses of NEPE propellant during extrusion loading, including compaction and compression, rapid shear flow into the crevice, stress concentration, and ignition reaction, have been firstly observed using a high-performance high-speed camera. The ignition reaction is observed in the triangular region of the NEPE propellant sample above the crevice when the drop weight velocity was 1.90 m/s. Based on the user material subroutine interface UMAT provided by finite element software LS-DYNA, a viscoelastic-plastic model and dual ignition criterion related to plastic shear dissipation are developed and applied to the local ignition response analysis under crevice extrusion conditions. The stress concentration occurs in the crevice location of the propellant sample, the shear stress is relatively large, the effective plastic work is relatively large, and the ignition reaction is easy to occur. When the sample thickness decreases from 5 mm to 2.5 mm, the shear stress increases from 22.3 MPa to 28.6 MPa, the critical value of effective plastic work required for ignition is shortened from 1280 μs to 730 μs, and the triangular area is easily triggering an ignition reaction. The propellant sample with a small thickness is more likely to stress concentration, resulting in large shear stress and effective work, triggering an ignition reaction.展开更多
The relativistic mean-field approach was implemented in the Lanzhou quantum molecular dynamics transport model(LQMD.RMF). Using the LQMD.RMF, the properties of collective flow and pion production were investigated sys...The relativistic mean-field approach was implemented in the Lanzhou quantum molecular dynamics transport model(LQMD.RMF). Using the LQMD.RMF, the properties of collective flow and pion production were investigated systematically for nuclear reactions with various isospin asymmetries. The directed and elliptic flows of the LQMD.RMF are able to describe the experimental data of STAR Collaboration. The directed flow difference between free neutrons and protons was associated with the stiffness of the symmetry energy, that is, a softer symmetry energy led to a larger flow difference. For various collision energies, the ratio between the π^(-) and π^(+) yields increased with a decrease in the slope parameter of the symmetry energy. When the collision energy was 270 MeV/nucleon, the single ratio of the pion transverse momentum spectra also increased with decreasing slope parameter of the symmetry energy in both nearly symmetric and neutron-rich systems.However, it is difficult to constrain the stiffness of the symmetry energy with the double ratio because of the lack of threshold energy correction on the pion production.展开更多
Traffic flow prediction plays a key role in the construction of intelligent transportation system.However,due to its complex spatio-temporal dependence and its uncertainty,the research becomes very challenging.Most of...Traffic flow prediction plays a key role in the construction of intelligent transportation system.However,due to its complex spatio-temporal dependence and its uncertainty,the research becomes very challenging.Most of the existing studies are based on graph neural networks that model traffic flow graphs and try to use fixed graph structure to deal with the relationship between nodes.However,due to the time-varying spatial correlation of the traffic network,there is no fixed node relationship,and these methods cannot effectively integrate the temporal and spatial features.This paper proposes a novel temporal-spatial dynamic graph convolutional network(TSADGCN).The dynamic time warping algorithm(DTW)is introduced to calculate the similarity of traffic flow sequence among network nodes in the time dimension,and the spatiotemporal graph of traffic flow is constructed to capture the spatiotemporal characteristics and dependencies of traffic flow.By combining graph attention network and time attention network,a spatiotemporal convolution block is constructed to capture spatiotemporal characteristics of traffic data.Experiments on open data sets PEMSD4 and PEMSD8 show that TSADGCN has higher prediction accuracy than well-known traffic flow prediction algorithms.展开更多
In order to understand the dynamics of granular flow on an erodible base soil,in this paper,a series of material point method-based granular column collapse tests were conducted to investigate numerically the mobility...In order to understand the dynamics of granular flow on an erodible base soil,in this paper,a series of material point method-based granular column collapse tests were conducted to investigate numerically the mobility and dynamic erosion process of granular flow subjected to the complex settings,i.e.,the aspect ratio,granular mass,friction and dilatancy resistance,gravity and presence of water.A set of power scaling laws were proposed to describe the final deposit characteristics of granular flow by the relations of the normalized run-out distance and the normalized final height of granular flow against the aspect ratio,being greatly affected by the complex geological settings,e.g.,granular mass,the friction and dilatancy resistance of granular soil,and presence of water in granular flow.An index of the coefficient of friction of granular soil was defined as a ratio of the target coefficient of friction over the initial coefficient of friction to quantify the scaling extent of friction change(i.e.,friction strengthening or weakening).There is a characteristic aspect ratio of granular column corresponding to the maximum mobility of granular flow with the minimum index of the apparent coefficient of friction.The index of the repose coefficient of friction of granular flow decreased gradually with the increase in aspect ratio because higher potential energy of granular column at a larger aspect ratio causes a larger kinetic energy of granular soil to weaken the friction of granular soil as a kind of velocity-related friction weakening.An increase in granular mass reduces gradually the indexes of the apparent and repose coefficients of friction of granular soil to enhance the mobility of granular flow.The mobility of granular flow increases gradually with the decrease in friction angle or increase in dilatancy angle of granular soil.However,the increase of gravity accelerates granular flow but showing the same final deposit profile without any dependence on gravity.The mobility of granular flow increases gradually by lowering the indexes of the apparent and repose coefficients of friction of granular flow while changing the surroundings,in turn,the dry soil,submerged soil and saturated soil,implying a gradually increased excessive mobility of granular flow with the friction weakening of granular soil.Presence of water in granular flow may be a potential catalyzer to yield a long run-out granular flow,as revealed in comparison of water-absent and water-present granular flows.In addition,the dynamic erosion and entrainment of based soil induced by granular flow subjected to the complex geological settings,i.e.,the aspect ratio,granular mass,gravity,friction and dilatancy resistance,and presence of water,were comprehensively investigated as well.展开更多
This study presents endwall hydrodynamics and heat transfer in a linear turbine cascade at Re 5×105 at low and high intensities of turbulence.Results are numerically predicted using the standard SST model and Re...This study presents endwall hydrodynamics and heat transfer in a linear turbine cascade at Re 5×105 at low and high intensities of turbulence.Results are numerically predicted using the standard SST model and Reθ-γtransition model as well as using the high-resolution LES separately.The major secondary flow components,comprising the horseshoe,corner,and passage vortices are recognized and the impact on heat or mass transfer is investigated.The complicated behavior of turbine passage secondary flow generation and establishment are impacted by the perspective of boundary layer attributes and inflow turbulence.The passage vortex concerning the latest big leading-edge vane is generated by the enlargement of the circulation developed at the first instance adjacent to the pressure side becomes powerful and mixes with other vortex systems during its migration towards the suction side.The study conclusions reveal that substantial enhancements are attained on the endwall surface,for the entire spanwise blade extension on the pressure surface,and in the highly 3-D region close to the endwall on the suction surface.The forecasted suction surface thermal exchange depicts great conformity with the measurement values and precisely reproduces the enhanced thermal exchange owing to the development and lateral distribution of the secondary flows along the midspan of the blade passage downstream.The impacts of the different secondary flow structures on the endwall thermal exchange are described in depth.展开更多
The southern part of the Lake Chad basin is under the gas and oil petroleum industry due to its hydrocarbon potential for about twenty years. This project stands out as the main challenges of the hydrocarbon productio...The southern part of the Lake Chad basin is under the gas and oil petroleum industry due to its hydrocarbon potential for about twenty years. This project stands out as the main challenges of the hydrocarbon production and the management of fluxes particularly the groundwater venues. A comprehensive study is thus conducted to develop a dynamic and analytic model for diagnosing the production performances with a particular view on the management of groundwater venues. The three main concerned reservoirs subdivided on subunits evidence their proper characteristics. The porous media, their densities, the internal flows and the water injection techniques such as water flooding were thus adopted. The oil viscosity variability within the reservoirs creates different levels of mobility between water and oil, highlighting the challenges of water management. The material balance model and the behavior of the well analysis were taken in consideration within the identified aquifer, emphasizing the importance of keeping the pressure through injection. The control of water productions, the management of the reservoir, the well strategical position and the specific completions lead to the model functioning. In addition, the CO log and the Pulsed Neutron indicate their limitations as a result of the water salinity and the porosity of the aquifer. The management of groundwater venues at Badila requires various approaches throughout the lifetime of the Crystal field such as the data acquisition and remediation actions and prevention, under a permanent monitoring of the dynamic fluxes in the reservoirs.展开更多
We report on the magnetohydrodynamic impact on the axisymmetric flow of Al_(2)O_(3)/Cu nanoparticles suspended in H_(2)O past a stretched/shrinked sheet.With the use of partial differential equations and the correspon...We report on the magnetohydrodynamic impact on the axisymmetric flow of Al_(2)O_(3)/Cu nanoparticles suspended in H_(2)O past a stretched/shrinked sheet.With the use of partial differential equations and the corresponding thermophysical characteristics of nanoparticles,the physical flow process is illustrated.The resultant nonlinear system of partial differential equations is converted into a system of ordinary differential equations using the suitable similarity transformations.The transformed differential equations are solved analytically.Impacts of the magnetic parameter,solid volume fraction and stretching/shrinking parameter on momentum and temperature distribution have been analyzed and interpreted graphically.The skin friction and Nusselt number were also evaluated.In addition,existence of dual solution was deduced for the shrinking sheet and unique solution for the stretching one.Further,Al_(2)O_(3)/H_(2)O nanofluid flow has better thermal conductivity on comparing with Cu/H_(2)O nanofluid.Furthermore,it was found that the first solutions of the stream are stable and physically realizable,whereas those of the second ones are unstable.展开更多
This study intends to evaluate the influence of temperature stratification on an unsteady fluid flow past an accelerated vertical plate in the existence of viscous dissipation.It is assumed that the medium under study...This study intends to evaluate the influence of temperature stratification on an unsteady fluid flow past an accelerated vertical plate in the existence of viscous dissipation.It is assumed that the medium under study is a grey,non-scattered fluid that both fascinates and transmits radiation.The leading equations are discretized using the finite differencemethod(FDM).UsingMATLABsoftware,the impacts of flowfactors on flowfields are revealed with particular examples in graphs and a table.In this regard,FDM results show that the velocity and temperature gradients increase with an increase of Eckert number.Furthermore,tables of the data indicate the influence of flow-contributing factors on the skin friction coefficients,and Nusselt numbers.When comparing constant and variable flow regimes,the constant flow regime has greater values for the nondimensional skin friction coefficient.This research is both innovative and fascinating since it has the potential to expand our understanding of fluid dynamics and to improve many different sectors.展开更多
Nicotinamide adenine dinucleotide (NADH/NAD+) is involved in important biochemical reactions in human metabolism, including participation in energy production by mitochondria. The changes in fluorescence intensity as ...Nicotinamide adenine dinucleotide (NADH/NAD+) is involved in important biochemical reactions in human metabolism, including participation in energy production by mitochondria. The changes in fluorescence intensity as a function of time in response to blocking and releasing of blood flow in a forearm are used as a measure of oxygen transport with blood to the tissue, which directly correlates with the skin microcirculation status. In this paper, a non-invasive dynamic monitoring system based on blood flow-mediated skin fluorescence (FMSF) technology is developed to monitor the NADH fluorescence intensity of skin tissue during the process of blocking reactive hyperemia. Simultaneously, laser speckle contrast imaging (LSCI) and laser Doppler flowmetry (LDF) were used to observe blood flow, blood oxygen saturation (SOt2) and relative amount of hemoglobin (rHb) during the measurement process, which helped to explore NADH dynamics relevant physiological changes. A variety of parameters have been derived to describe NADH fluorescence curve based on the FMSF device. The experimental results are conducive to understanding the NADH measurement and the physiological processes related to it, which help FMSF to be a great avenue for in vivo physiological, clinical and pharmacological research on mitochondrial metabolism.展开更多
The China-Kazakhstan Horgos Frontier International Cooperation Center has been established for nearly 20 years,and its targeted policies have gone through the stages of initiative,negotiation and modification,official...The China-Kazakhstan Horgos Frontier International Cooperation Center has been established for nearly 20 years,and its targeted policies have gone through the stages of initiative,negotiation and modification,official operation,and optimization and enhancement.This paper explores the problems,policy,and political sources of policy changes since the establishment of the Horgos International Border Cooperation Center by applying the multi-source flow theory to find the opening of the problematic and political windows.It also constructs a model of policy change dynamics to provide suggestions on how the government should better promote the good development of China’s first transnational cooperation center.展开更多
基金supported by the National Natural Science Foundation of China(No.32002442)the National Key R&D Program(No.2019YFD0902101).
文摘On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the effect of spacing between reefs on flow scale and the flow state,were analyzed.Results indicate upwelling,slow flow,and eddy around a single reef.Maximum velocity,height,and volume of upwelling in front of a single reef were positively correlated with inflow velocity.The length and volume of slow flow increased with the increase in inflow velocity.Eddies were present both inside and backward,and vorticity was positively correlated with inflow velocity.Space between reefs had a minor influence on the maximum velocity and height of upwelling.With the increase in space from 0.5 L to 1.5 L(L is the reef lehgth),the length of slow flow in the front and back of the combined reefs increased slightly.When the space was 2.0 L,the length of the slow flow decreased.In four different spaces,eddies were present inside and at the back of each reef.The maximum vorticity was negatively correlated with space from 0.5 L to 1.5 L,but under 2.0 L space,the maximum vorticity was close to the vorticity of a single reef under the same inflow velocity.
基金supported by the National Natural Science Foundation of China (Grant No. 41877524, No. 42172320, No. 41971214)。
文摘This study employs the smoothed particle hydrodynamics–finite element method(SPH–FEM) coupling numerical method to investigate the impact of debris flow on reinforced concrete(RC)-frame buildings. The methodology considers the variables of debris flow depth and velocity and introduces the intensity index IDV(IDV = DV) to evaluate three different levels of debris flow impact intensity. The primary focus of this study is to investigate the dynamic response and failure mechanism of RC-frame buildings under debris flow impact, including structural failure patterns, impact force and column displacement. The results show that under a highintensity impact, a gradual collapse process of the RCframe building can be observed, and the damage mode of the frame column reflects shear failure or plastic hinge failure mechanism. First, the longitudinal infill walls are damaged owing to their low out-of-plane flexural capacity;the critical failure intensity index IDV value is approximately 7.5 m2/s. The structure cannot withstand debris flows with an intensity index IDV greater than 16 m2/s, and it is recommended that the peak impact force should not exceed 2100 k N. The impact damage ability of debris flow on buildings mostly originates from the impact force of the frontal debris flow, with the impact force of the debris flow body being approximately 42% lower than that of the debris flow head. Finally, a five-level classification system for evaluating the damage status of buildings is proposed based on the numerical simulation and investigation results of the disaster site.
基金Project supported by the National Natural Science Foundation of China(No.52109068)the Water Conservancy Technology Project of Jiangsu Province of China(No.2022060)。
文摘Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the nonlinear dynamic behaviors of viscoelastic fluids.However,traditional grid-based multiscale methods are confined to simple viscoelastic flows with short relaxation time,and there is a lack of uniform multiscale scheme available for coupling different solvers in the simulations of viscoelastic fluids.In this paper,a universal multiscale method coupling an improved smoothed particle hydrodynamics(SPH)and multiscale universal interface(MUI)library is presented for viscoelastic flows.The proposed multiscale method builds on an improved SPH method and leverages the MUI library to facilitate the exchange of information among different solvers in the overlapping domain.We test the capability and flexibility of the presented multiscale method to deal with complex viscoelastic flows by solving different multiscale problems of viscoelastic flows.In the first example,the simulation of a viscoelastic Poiseuille flow is carried out by two coupled improved SPH methods with different spatial resolutions.The effects of exchanging different physical quantities on the numerical results in both the upper and lower domains are also investigated as well as the absolute errors in the overlapping domain.In the second example,the complex Wannier flow with different Weissenberg numbers is further simulated by two improved SPH methods and coupling the improved SPH method and the dissipative particle dynamics(DPD)method.The numerical results show that the physical quantities for viscoelastic flows obtained by the presented multiscale method are in consistence with those obtained by a single solver in the overlapping domain.Moreover,transferring different physical quantities has an important effect on the numerical results.
基金funded by the National Natural Science Foundation of China(Grant Nos.42120104002,41941019)the Research Grants Council of the Hong Kong Special Administrative Region,China(Grant No.AoE/E-603/18).
文摘During long-term operation,the performance of obstacles would be changed due to the material accumulating upslope the obstacle.However,the effects of retained material on impact,overflow and landing dynamics of granular flow have not yet been elucidated.To address this gap,physical flume tests and discrete element simulations are conducted considering a range of normalized deposition height h0/H from 0 to 1,where h0 and H represent the deposition height and obstacle height,respectively.An analytical model is modified to evaluate the flow velocity and flow depth after interacting with the retained materials,which further serve to calculate the peak impact force on the obstacle.Notably,the computed impact forces successfully predict the experimental results when a≥25°.In addition,the results indicate that a higher h0/H leads to a lower dynamic impact force,a greater landing distance L,and a larger landing coefficient Cr,where Cr is the ratio of slope-parallel component of landing velocity to flow velocity just before landing.Compared to the existing overflow model,the measured landing distance L is underestimated by up to 30%,and therefore it is insufficient for obstacle design when there is retained material.Moreover,the recommended Cr in current design practice is found to be nonconservative for estimating the landing velocity of geophysical flow.This study provides insightful scientific basis for designing obstacles with deposition.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.51775077 and 51909023)。
文摘Shear-thinning fluids have been widely used in microfluidic systems,but their internal flow mechanism is still unclear.Therefore,in this paper,molecular dynamics simulations are used to study the laminar flow of shear-thinning fluid in a microchannel.We validated the feasibility of our simulation method by evaluating the mean square displacement and Reynolds number of the solution layers.The results show that the change rule of the fluid system's velocity profile and interaction energy can reflect the shear-thinning characteristics of the fluids.The velocity profile resembles a top-hat shape,intensifying as the fluid's power law index decreases.The interaction energy between the wall and the fluid decreases gradually with increasing velocity,and a high concentration of non-Newtonian fluid reaches a plateau sooner.Moreover,the velocity profile of the fluid is related to the molecule number density distribution and their values are inversely proportional.By analyzing the radial distribution function,we found that the hydrogen bonds between solute and water molecules weaken with the increase in velocity.This observation offers an explanation for the shear-thinning phenomenon of the non-Newtonian flow from a micro perspective.
基金supported by National Natural Science Foundation of China(12172308)National Key Research and Development Program of China(2020YFA0710902).
文摘Combining the detached eddy simulation(DES)method and Ffowcs Williams-Hawkings(FW-H)equation,the effect of bogie cavity end wall inclination on the flow field and aerodynamic noise in the bogie region is numerically studied.First,the simulation is conducted based on a simplified cavity-bogie model,including five cases with different inclination angles of the front and rear walls of the cavity.By comparing and analyzing the flow field and acoustic results of the five cases,the influence of the regularity and mechanism of the bogie cavity end wall inclination on the flow field and the aerodynamic noise of the bogie region are revealed.Then,the noise reduction strategy determined by the results of the simplified cavity-bogie model is applied to a three-car marshaling train model to verify its effectiveness when applied to the real train.The results reveal that the forward inclination of the cavity front wall enlarges the influence area of shear vortex structures formed at the leading edge of the cavity and intensifies the interaction between the vortex structures and the front wheelset,frontmotor,and front gearbox,resulting in the increase of the aerodynamic noise generated by the bogie itself.The backward inclination of the cavity rear wall is conducive to guiding the vortex structures flow out of the cavity and weakening the interaction between the shear vortex structures and the cavity rear wall,leading to the reduction of the aerodynamic noise generated by the bogie cavity.Inclining the rear end wall of the foremost bogie cavity of the head car is a feasible aerodynamic noise reduction measure for high-speed trains.
基金supported by the National Natural Science Foundation of China(U2244227)National Key R&D Program of China(2023YFC3007205)National Natural Science Foundation of China(No.42271013).
文摘The boulder impact force in debris flow is generally calculated by static methods such as the cantilever beam models.However,these methods cannot describe the dynamic scenario of boulder collision on structures,so the inertia and damping effects of the structures are not involved causing an overestimation on the boulder impact force.In order to address this issue,a dynamic-based model for calculating the boulder impact force of a debris flow was proposed in this study,and the dynamic characteristics of a cantilever beam with multiple degrees of freedom under boulder collision were investigated.By using the drop-weight method to simulate boulders within debris flow,seven experiments of drop-weight impacting the cantilever beam were used to calibrate the error of the dynamicbased model.Results indicate that the dynamic-based model is able to reconstruct the impact force history on the cantilever beam during impact time and the error of dynamic-based model is 15.3%in calculating boulder impact force,significantly outperforming the cantilever beam model’s error of 285%.Therefore,the dynamic-based model can overcome the drawbacks of the static-based models and provide a more reliable theoretical foundation for the engineering design of debris flow control structures.
基金National Natural Science Foundation of China(U22B20131)State Key Laboratory of Explosion Science and Technology(QNKT23-10)for supporting this project.
文摘Investigating the ignition response of nitrate ester plasticized polyether(NEPE) propellant under dynamic extrusion loading is of great significant at least for two cases. Firstly, it helps to understand the mechanism and conditions of unwanted ignition inside charged propellant under accident stimulus.Secondly, evaluates the risk of a shell crevice in a solid rocket motor(SRM) under a falling or overturning scene. In the present study, an innovative visual crevice extrusion experiment is designed using a dropweight apparatus. The dynamic responses of NEPE propellant during extrusion loading, including compaction and compression, rapid shear flow into the crevice, stress concentration, and ignition reaction, have been firstly observed using a high-performance high-speed camera. The ignition reaction is observed in the triangular region of the NEPE propellant sample above the crevice when the drop weight velocity was 1.90 m/s. Based on the user material subroutine interface UMAT provided by finite element software LS-DYNA, a viscoelastic-plastic model and dual ignition criterion related to plastic shear dissipation are developed and applied to the local ignition response analysis under crevice extrusion conditions. The stress concentration occurs in the crevice location of the propellant sample, the shear stress is relatively large, the effective plastic work is relatively large, and the ignition reaction is easy to occur. When the sample thickness decreases from 5 mm to 2.5 mm, the shear stress increases from 22.3 MPa to 28.6 MPa, the critical value of effective plastic work required for ignition is shortened from 1280 μs to 730 μs, and the triangular area is easily triggering an ignition reaction. The propellant sample with a small thickness is more likely to stress concentration, resulting in large shear stress and effective work, triggering an ignition reaction.
基金This study was supported by the National Natural Science Foundation ofChina(Nos.12147106,12175072,and 11722546)the Talent Programof South China University of Technology(No.20210115).
文摘The relativistic mean-field approach was implemented in the Lanzhou quantum molecular dynamics transport model(LQMD.RMF). Using the LQMD.RMF, the properties of collective flow and pion production were investigated systematically for nuclear reactions with various isospin asymmetries. The directed and elliptic flows of the LQMD.RMF are able to describe the experimental data of STAR Collaboration. The directed flow difference between free neutrons and protons was associated with the stiffness of the symmetry energy, that is, a softer symmetry energy led to a larger flow difference. For various collision energies, the ratio between the π^(-) and π^(+) yields increased with a decrease in the slope parameter of the symmetry energy. When the collision energy was 270 MeV/nucleon, the single ratio of the pion transverse momentum spectra also increased with decreasing slope parameter of the symmetry energy in both nearly symmetric and neutron-rich systems.However, it is difficult to constrain the stiffness of the symmetry energy with the double ratio because of the lack of threshold energy correction on the pion production.
基金supported by the National Natural Science Foundation of China(Grant:62176086).
文摘Traffic flow prediction plays a key role in the construction of intelligent transportation system.However,due to its complex spatio-temporal dependence and its uncertainty,the research becomes very challenging.Most of the existing studies are based on graph neural networks that model traffic flow graphs and try to use fixed graph structure to deal with the relationship between nodes.However,due to the time-varying spatial correlation of the traffic network,there is no fixed node relationship,and these methods cannot effectively integrate the temporal and spatial features.This paper proposes a novel temporal-spatial dynamic graph convolutional network(TSADGCN).The dynamic time warping algorithm(DTW)is introduced to calculate the similarity of traffic flow sequence among network nodes in the time dimension,and the spatiotemporal graph of traffic flow is constructed to capture the spatiotemporal characteristics and dependencies of traffic flow.By combining graph attention network and time attention network,a spatiotemporal convolution block is constructed to capture spatiotemporal characteristics of traffic data.Experiments on open data sets PEMSD4 and PEMSD8 show that TSADGCN has higher prediction accuracy than well-known traffic flow prediction algorithms.
基金This work was supported by the National Natural Science Foundation of China(Grant no.U22A20603)Sichuan Science and Technology Program-China(Grant No.2023ZYD0149)CAS"Light of West China"Program-China(Grant No.Fangwei Yu).In addition,a special acknowledgement should be expressed to a famous Chinese television drama:My Chief and My Regiment that accompanied me(Dr.Fangwei Yu)through the loneliness time of completing this study.
文摘In order to understand the dynamics of granular flow on an erodible base soil,in this paper,a series of material point method-based granular column collapse tests were conducted to investigate numerically the mobility and dynamic erosion process of granular flow subjected to the complex settings,i.e.,the aspect ratio,granular mass,friction and dilatancy resistance,gravity and presence of water.A set of power scaling laws were proposed to describe the final deposit characteristics of granular flow by the relations of the normalized run-out distance and the normalized final height of granular flow against the aspect ratio,being greatly affected by the complex geological settings,e.g.,granular mass,the friction and dilatancy resistance of granular soil,and presence of water in granular flow.An index of the coefficient of friction of granular soil was defined as a ratio of the target coefficient of friction over the initial coefficient of friction to quantify the scaling extent of friction change(i.e.,friction strengthening or weakening).There is a characteristic aspect ratio of granular column corresponding to the maximum mobility of granular flow with the minimum index of the apparent coefficient of friction.The index of the repose coefficient of friction of granular flow decreased gradually with the increase in aspect ratio because higher potential energy of granular column at a larger aspect ratio causes a larger kinetic energy of granular soil to weaken the friction of granular soil as a kind of velocity-related friction weakening.An increase in granular mass reduces gradually the indexes of the apparent and repose coefficients of friction of granular soil to enhance the mobility of granular flow.The mobility of granular flow increases gradually with the decrease in friction angle or increase in dilatancy angle of granular soil.However,the increase of gravity accelerates granular flow but showing the same final deposit profile without any dependence on gravity.The mobility of granular flow increases gradually by lowering the indexes of the apparent and repose coefficients of friction of granular flow while changing the surroundings,in turn,the dry soil,submerged soil and saturated soil,implying a gradually increased excessive mobility of granular flow with the friction weakening of granular soil.Presence of water in granular flow may be a potential catalyzer to yield a long run-out granular flow,as revealed in comparison of water-absent and water-present granular flows.In addition,the dynamic erosion and entrainment of based soil induced by granular flow subjected to the complex geological settings,i.e.,the aspect ratio,granular mass,gravity,friction and dilatancy resistance,and presence of water,were comprehensively investigated as well.
文摘This study presents endwall hydrodynamics and heat transfer in a linear turbine cascade at Re 5×105 at low and high intensities of turbulence.Results are numerically predicted using the standard SST model and Reθ-γtransition model as well as using the high-resolution LES separately.The major secondary flow components,comprising the horseshoe,corner,and passage vortices are recognized and the impact on heat or mass transfer is investigated.The complicated behavior of turbine passage secondary flow generation and establishment are impacted by the perspective of boundary layer attributes and inflow turbulence.The passage vortex concerning the latest big leading-edge vane is generated by the enlargement of the circulation developed at the first instance adjacent to the pressure side becomes powerful and mixes with other vortex systems during its migration towards the suction side.The study conclusions reveal that substantial enhancements are attained on the endwall surface,for the entire spanwise blade extension on the pressure surface,and in the highly 3-D region close to the endwall on the suction surface.The forecasted suction surface thermal exchange depicts great conformity with the measurement values and precisely reproduces the enhanced thermal exchange owing to the development and lateral distribution of the secondary flows along the midspan of the blade passage downstream.The impacts of the different secondary flow structures on the endwall thermal exchange are described in depth.
文摘The southern part of the Lake Chad basin is under the gas and oil petroleum industry due to its hydrocarbon potential for about twenty years. This project stands out as the main challenges of the hydrocarbon production and the management of fluxes particularly the groundwater venues. A comprehensive study is thus conducted to develop a dynamic and analytic model for diagnosing the production performances with a particular view on the management of groundwater venues. The three main concerned reservoirs subdivided on subunits evidence their proper characteristics. The porous media, their densities, the internal flows and the water injection techniques such as water flooding were thus adopted. The oil viscosity variability within the reservoirs creates different levels of mobility between water and oil, highlighting the challenges of water management. The material balance model and the behavior of the well analysis were taken in consideration within the identified aquifer, emphasizing the importance of keeping the pressure through injection. The control of water productions, the management of the reservoir, the well strategical position and the specific completions lead to the model functioning. In addition, the CO log and the Pulsed Neutron indicate their limitations as a result of the water salinity and the porosity of the aquifer. The management of groundwater venues at Badila requires various approaches throughout the lifetime of the Crystal field such as the data acquisition and remediation actions and prevention, under a permanent monitoring of the dynamic fluxes in the reservoirs.
基金LMP acknowledges financial support from ANID through Convocatoria Nacional Subvención a Instalación en la Academia Convocatoria Año 2021,Grant SA77210040。
文摘We report on the magnetohydrodynamic impact on the axisymmetric flow of Al_(2)O_(3)/Cu nanoparticles suspended in H_(2)O past a stretched/shrinked sheet.With the use of partial differential equations and the corresponding thermophysical characteristics of nanoparticles,the physical flow process is illustrated.The resultant nonlinear system of partial differential equations is converted into a system of ordinary differential equations using the suitable similarity transformations.The transformed differential equations are solved analytically.Impacts of the magnetic parameter,solid volume fraction and stretching/shrinking parameter on momentum and temperature distribution have been analyzed and interpreted graphically.The skin friction and Nusselt number were also evaluated.In addition,existence of dual solution was deduced for the shrinking sheet and unique solution for the stretching one.Further,Al_(2)O_(3)/H_(2)O nanofluid flow has better thermal conductivity on comparing with Cu/H_(2)O nanofluid.Furthermore,it was found that the first solutions of the stream are stable and physically realizable,whereas those of the second ones are unstable.
文摘This study intends to evaluate the influence of temperature stratification on an unsteady fluid flow past an accelerated vertical plate in the existence of viscous dissipation.It is assumed that the medium under study is a grey,non-scattered fluid that both fascinates and transmits radiation.The leading equations are discretized using the finite differencemethod(FDM).UsingMATLABsoftware,the impacts of flowfactors on flowfields are revealed with particular examples in graphs and a table.In this regard,FDM results show that the velocity and temperature gradients increase with an increase of Eckert number.Furthermore,tables of the data indicate the influence of flow-contributing factors on the skin friction coefficients,and Nusselt numbers.When comparing constant and variable flow regimes,the constant flow regime has greater values for the nondimensional skin friction coefficient.This research is both innovative and fascinating since it has the potential to expand our understanding of fluid dynamics and to improve many different sectors.
文摘Nicotinamide adenine dinucleotide (NADH/NAD+) is involved in important biochemical reactions in human metabolism, including participation in energy production by mitochondria. The changes in fluorescence intensity as a function of time in response to blocking and releasing of blood flow in a forearm are used as a measure of oxygen transport with blood to the tissue, which directly correlates with the skin microcirculation status. In this paper, a non-invasive dynamic monitoring system based on blood flow-mediated skin fluorescence (FMSF) technology is developed to monitor the NADH fluorescence intensity of skin tissue during the process of blocking reactive hyperemia. Simultaneously, laser speckle contrast imaging (LSCI) and laser Doppler flowmetry (LDF) were used to observe blood flow, blood oxygen saturation (SOt2) and relative amount of hemoglobin (rHb) during the measurement process, which helped to explore NADH dynamics relevant physiological changes. A variety of parameters have been derived to describe NADH fluorescence curve based on the FMSF device. The experimental results are conducive to understanding the NADH measurement and the physiological processes related to it, which help FMSF to be a great avenue for in vivo physiological, clinical and pharmacological research on mitochondrial metabolism.
文摘The China-Kazakhstan Horgos Frontier International Cooperation Center has been established for nearly 20 years,and its targeted policies have gone through the stages of initiative,negotiation and modification,official operation,and optimization and enhancement.This paper explores the problems,policy,and political sources of policy changes since the establishment of the Horgos International Border Cooperation Center by applying the multi-source flow theory to find the opening of the problematic and political windows.It also constructs a model of policy change dynamics to provide suggestions on how the government should better promote the good development of China’s first transnational cooperation center.