期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Dynamic indentation response of porous SiC/Ti-based metallic glass composite
1
作者 Ben-peng WANG Lu WANG +3 位作者 Yun-fei XUE Yang-wei WANG Hai-feng ZHANG Hua-meng FU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第12期3154-3160,共7页
Porous SiC/Ti-based metallic glass composite (Ti-BMGC), a new kind of composite, has significant application prospectin the field of light armor. To evaluate the dynamic mechanical response of the composite, dynamic V... Porous SiC/Ti-based metallic glass composite (Ti-BMGC), a new kind of composite, has significant application prospectin the field of light armor. To evaluate the dynamic mechanical response of the composite, dynamic Vickers hardness andindentation-induced deformation behavior were investigated by comparison with that under static indentation. The dynamic hardnesswas measured by a modified split Hopkinson pressure bar (SHPB). The dynamic hardness is obviously greater than the statichardness. The brittleness parameter under dynamic indentation is also greater than that under static indentation. Although thedynamic indentation induced more severe deformation behavior than the static indentation, the deformation and fracturecharacteristics in the two loading cases are nearly the same, both exhibiting extensive cracks in the SiC phase and severe plasticdeformation in the metallic glass phase. 展开更多
关键词 COMPOSITE porous SiC metallic glass dynamic hardness deformation behavior
下载PDF
Characterization of transient groundwater flow through a high arch dam foundation during reservoir impounding 被引量:6
2
作者 Yifeng Chen Jiamin Hong +1 位作者 Shaolong Tang Chuangbing Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第4期462-471,共10页
Numerous deep underground projects have been designed and constructed in China, which are beyond the current specifications in terms of scale and construction difficulty. The severe failure problems induced by high in... Numerous deep underground projects have been designed and constructed in China, which are beyond the current specifications in terms of scale and construction difficulty. The severe failure problems induced by high in situ stress, such as rockburst, spalling, damage of deep surrounding rocks, and timedependent damage, were observed during construction of these projects. To address these problems, the dynamic design method for deep hard rock tunnels is proposed based on the disintegration process of surrounding rocks using associated dynamic control theories and technologies. Seven steps are basically employed:(i) determination of design objective,(ii) characteristics of site, rock mass and project, and identification of constraint conditions,(iii) selection or development of global design strategy,(iv)determination of modeling method and software,(v) preliminary design,(vi) comprehensive integrated method and dynamic feedback analysis, and(vii) final design. This dynamic method was applied to the construction of the headrace tunnels at Jinping II hydropower station. The key technical issues encountered during the construction of deep hard rock tunnels, such as in situ stress distribution along the tunnels, mechanical properties and constitutive model of deep hard rocks, determination of mechanical parameters of surrounding rocks, stability evaluation of surrounding rocks, and optimization design of rock support and lining, have been adequately addressed. The proposed method and its application can provide guidance for deep underground projects characterized with similar geological conditions. 展开更多
关键词 Deep hard rock tunnels dynamic design method Rockburst In situ stress Constitutive model
下载PDF
Influence of wall motion on particle sedimentation using hybrid LB-IBM scheme
3
作者 Mussie A. Habte ChuiJie Wu 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2017年第3期55-73,共19页
We integrate the lattice Boltzmann method(LBM) and immersed boundary method(IBM) to capture the coupling between a rigid boundary surface and the hydrodynamic response of an enclosed particle laden fluid. We focus on ... We integrate the lattice Boltzmann method(LBM) and immersed boundary method(IBM) to capture the coupling between a rigid boundary surface and the hydrodynamic response of an enclosed particle laden fluid. We focus on a rigid box filled with a Newtonian fluid where the drag force based on the slip velocity at the wall and settling particles induces the interaction. We impose an external harmonic oscillation on the system boundary and found interesting results in the sedimentation behavior. Our results reveal that the sedimentation and particle locations are sensitive to the boundary walls oscillation amplitude and the subsequent changes on the enclosed flow field. Two different particle distribution analyses were performed and showed the presence of an agglomerate structure of particles. Despite the increase in the amplitude of wall motion, the turbulence level of the flow field and distribution of particles are found to be less in quantity compared to the stationary walls. The integrated LBM-IBM methodology promised the prospect of an efficient and accurate dynamic coupling between a non-compliant bounding surface and flow field in a wide-range of systems. Understanding the dynamics of the fluid-filled box can be particularly important in a simulation of particle deposition within biological systems and other engineering applications. 展开更多
关键词 particle collisions lattice Boltzmann method immersed boundary method hard sphere molecular dynamics harmoni coscillation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部