Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research atten...Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research attention.The traditional method for studying the dynamic strength characteristics of soils is dynamic triaxial testing,and the discrete element simulation of lightweight soils under cyclic load has rarely been considered.To study the meso-mechanisms of the dynamic failure processes of EPS particle lightweight soils,a discrete element numerical model is established using the particle flow code(PFC)software.The contact force,displacement field,and velocity field of lightweight soil under different cumulative compressive strains are studied.The results show that the hysteresis curves of lightweight soil present characteristics of strain accumulation,which reflect the cyclic effects of the dynamic load.When the confining pressure increases,the contact force of the particles also increases.The confining pressure can restrain the motion of the particle system and increase the dynamic strength of the sample.When the confining pressure is held constant,an increase in compressive strain causes minimal change in the contact force between soil particles.However,the contact force between the EPS particles decreases,and their displacement direction points vertically toward the center of the sample.Under an increase in compressive strain,the velocity direction of the particle system changes from a random distribution and points vertically toward the center of the sample.When the compressive strain is 5%,the number of particles deflected in the particle velocity direction increases significantly,and the cumulative rate of deformation in the lightweight soil accelerates.Therefore,it is feasible to use 5%compressive strain as the dynamic strength standard for lightweight soil.Discrete element methods provide a new approach toward the dynamic performance evaluation of lightweight soil subgrades.展开更多
BACKGROUND Among the most frequent hip fractures are trochanteric fractures,which usually occur from low-energy trauma like minor falls,especially in older people with osteoporotic bones.AIM To evaluate the treatment ...BACKGROUND Among the most frequent hip fractures are trochanteric fractures,which usually occur from low-energy trauma like minor falls,especially in older people with osteoporotic bones.AIM To evaluate the treatment efficacy of dynamic condylar screws(DCS)and proximal femoral nails(PFN)for unstable intertrochanteric fractures.METHODS To find pertinent randomized controlled trials and retrospective observational studies comparing PFN with DCS for the management of unstable femoral intertrochanteric fractures,a thorough search was carried out.For research studies published between January 1996 and April 2024,PubMed,EMBASE,Scopus,Web of Science,Cochrane Library,and Google Scholar were all searched.The complete texts of the papers were retrieved,vetted,and independently examined by two investigators.Disputes were settled by consensus,and any disagreements that persisted were arbitrated by a third author.RESULTS This study included six articles,comprising a total of 173 patients.Compared to the DCS,the PFN had a shorter operation time[mean difference(MD):-41.7 min,95%confidence interval(95%CI):-63.04 to-20.35,P=0.0001],higher success rates with closed reduction techniques[risk ratio(RR):34.05,95%CI:11.12-104.31,P<0.00001],and required less intraoperative blood transfusion(MD:-1.4 units,95%CI:-1.80 to-1.00,P<0.00001).Additionally,the PFN showed shorter fracture union time(MD:-6.92 wk,95%CI:-10.27 to-3.57,P<0.0001)and a lower incidence of reoperation(RR:0.37,95%CI:0.17-0.82,P=0.01).However,there was no discernible variation regarding hospital stay,implant-related complications,and infections.CONCLUSION Compared to DCS,PFN offers shorter operative times,reduces the blood transfusions requirements,achieves higher closed reduction success,enables faster fracture healing,and lowers reoperation incidence.展开更多
A dynamic free energy hysteresis model in magnetostrictive actuators is presented. It is the free energy hysteresis model coupled to an ordinary different equation in an unusual way. According to its special structure...A dynamic free energy hysteresis model in magnetostrictive actuators is presented. It is the free energy hysteresis model coupled to an ordinary different equation in an unusual way. According to its special structure, numerical implementation method of the dynamic model is provided. The resistor parameter in the dynamic model changes according to different frequency ranges. This makes numerical implementation results reasonable in the discussed operating frequency range. The validity of the dynamic free energy model is illustrated by comparison with experimental data.展开更多
Flexoelectric effect, referring to the strain gradient induced polarization, widely exists in dielectric materials, but its molecular dynamics has not been studied so much so far. In this work, the radial distribution...Flexoelectric effect, referring to the strain gradient induced polarization, widely exists in dielectric materials, but its molecular dynamics has not been studied so much so far. In this work, the radial distribution function of BaTiO_(3) and the phase transition temperatures have been investigated, and the results show that the core-shell potential model is effective and the structure of BaTiO_(3) is stable in a temperature range of 10 K–150 K. Molecular dynamics simulated hysteresis loops of BaTiO_(3) show that anisotropy can play an important role in the coercive field. Based on the rational simulation process,the effects of cantilever beam bent angle and fixed length on the polarization are analyzed. It is found that the small bent angle of the curved cantilever beam can give a proportional relationship with a fixed end length and a non-linear relationship is presented when the bent angle is much larger. The prediction of flexoelectric coefficient in BaTiO_(3) is 18.5 nC/m. This work provides a computational framework for the study of flexoelectric effect by using molecular dynamics.展开更多
This paper presents dynamic-behavior comparisons and related forensic analyses of a submerged floating tunnel(SFT)between numerical simulation and physical experiment under regular and irregular waves.The experiments ...This paper presents dynamic-behavior comparisons and related forensic analyses of a submerged floating tunnel(SFT)between numerical simulation and physical experiment under regular and irregular waves.The experiments are conducted in the 3Dwave tank with 1:33.3 scale,and the corresponding coupled time-domain simulation tool is devised for comparison.The entire SFT systemconsists of a long concrete tunnel and 12 tubular aluminummooring lines.Two numerical simulation models,the Cummins equation with 3D potential theory including second-order wave-body interaction effects and the much simpler Morison-equation-based formula with the lumped-massbased line model,are designed and compared.Forensic analyses for mooring-line adjustments in the simulation are carried out in view of the best representation of the physical system.After that,the measured pre-tension distribution and systemstiffness of twelvemooring lines arewell reproduced in the numericalmodel.Subsequently,the dynamic responses and mooring tensions of the SFT are compared under regular and irregular waves.The measured and simulated results coincide reasonably well for both regular-and irregular-wave conditions.展开更多
电源管理芯片在超过可承受温度范围工作时会对自身造成不同程度的损坏,过温保护电路对提高该类芯片的可靠性和鲁棒性具有重要作用。文中设计了一种具有温度过高关断和温度过低提醒等双重功能的高精度过温保护电路。利用正、负温度系数...电源管理芯片在超过可承受温度范围工作时会对自身造成不同程度的损坏,过温保护电路对提高该类芯片的可靠性和鲁棒性具有重要作用。文中设计了一种具有温度过高关断和温度过低提醒等双重功能的高精度过温保护电路。利用正、负温度系数电压对芯片温度进行实时检测,并与带隙基准电路输出端的不同基准电压分别进行比较得到4个逻辑翻转点,进而通过高精度比较器电路和迟滞逻辑电路处理后,输出迟滞逻辑信号来控制芯片的工作状态或进行温度过低提醒。基于0.18μm BCD(Bipolar-Complementary Metal Oxied Semiconductor-Double diffused Metal Oxide Semiconductor)工艺设计并完成了相关仿真验证,仿真结果表明,在电源电压范围为3.0~5.5 V时,该电路输出端的迟滞逻辑翻转信号对应的温度阈值最大偏移量在0.3℃以内,具备较高的精度,可广泛集成于各种需要过温保护功能的电源管理芯片。展开更多
Adhesion plays an important role in miniaturized devices and technologies,which depends not only on indentation depth but also on the history of contact making and breaking,giving rise to adhesion hysteresis.In the pr...Adhesion plays an important role in miniaturized devices and technologies,which depends not only on indentation depth but also on the history of contact making and breaking,giving rise to adhesion hysteresis.In the present work,adhesion hysteresis has been investigated via molecular dynamics simulations on approaching and retracting a rigid tip to and from a substrate.The results show that hysteresis in the force-displacement curve that depends on approaching and retraction velocities arises under both elastic and plastic deformation.The underlying mechanisms have been analyzed.The implications of the results in friction have been discussed briefly.展开更多
基金supported by the National Natural Science Foundation of China (No. 51509211)the China Postdoctoral Science Foundation (No. 2016M602863)+5 种基金the Natural Science Foundation of Shaanxi Province (Nos. 2024JC-YBMS-354 and 2021JLM-51)the Excellent Science and Technology Activities Foundation for Returned Overseas Teachers of Shaanxi Province (No. 2018031)the Social Development Foundation of Shaanxi Province (No. 2015SF260)the Postdoctoral Science Foundation of Shaanxi Province (No. 2017BSHYDZZ50)Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University (No. SZ02306)Xi’an Key Laboratory of Geotechnical and Underground Engineering, Xi’an University of Science and Technology (No. XKLGUEKF21-02)
文摘Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research attention.The traditional method for studying the dynamic strength characteristics of soils is dynamic triaxial testing,and the discrete element simulation of lightweight soils under cyclic load has rarely been considered.To study the meso-mechanisms of the dynamic failure processes of EPS particle lightweight soils,a discrete element numerical model is established using the particle flow code(PFC)software.The contact force,displacement field,and velocity field of lightweight soil under different cumulative compressive strains are studied.The results show that the hysteresis curves of lightweight soil present characteristics of strain accumulation,which reflect the cyclic effects of the dynamic load.When the confining pressure increases,the contact force of the particles also increases.The confining pressure can restrain the motion of the particle system and increase the dynamic strength of the sample.When the confining pressure is held constant,an increase in compressive strain causes minimal change in the contact force between soil particles.However,the contact force between the EPS particles decreases,and their displacement direction points vertically toward the center of the sample.Under an increase in compressive strain,the velocity direction of the particle system changes from a random distribution and points vertically toward the center of the sample.When the compressive strain is 5%,the number of particles deflected in the particle velocity direction increases significantly,and the cumulative rate of deformation in the lightweight soil accelerates.Therefore,it is feasible to use 5%compressive strain as the dynamic strength standard for lightweight soil.Discrete element methods provide a new approach toward the dynamic performance evaluation of lightweight soil subgrades.
文摘BACKGROUND Among the most frequent hip fractures are trochanteric fractures,which usually occur from low-energy trauma like minor falls,especially in older people with osteoporotic bones.AIM To evaluate the treatment efficacy of dynamic condylar screws(DCS)and proximal femoral nails(PFN)for unstable intertrochanteric fractures.METHODS To find pertinent randomized controlled trials and retrospective observational studies comparing PFN with DCS for the management of unstable femoral intertrochanteric fractures,a thorough search was carried out.For research studies published between January 1996 and April 2024,PubMed,EMBASE,Scopus,Web of Science,Cochrane Library,and Google Scholar were all searched.The complete texts of the papers were retrieved,vetted,and independently examined by two investigators.Disputes were settled by consensus,and any disagreements that persisted were arbitrated by a third author.RESULTS This study included six articles,comprising a total of 173 patients.Compared to the DCS,the PFN had a shorter operation time[mean difference(MD):-41.7 min,95%confidence interval(95%CI):-63.04 to-20.35,P=0.0001],higher success rates with closed reduction techniques[risk ratio(RR):34.05,95%CI:11.12-104.31,P<0.00001],and required less intraoperative blood transfusion(MD:-1.4 units,95%CI:-1.80 to-1.00,P<0.00001).Additionally,the PFN showed shorter fracture union time(MD:-6.92 wk,95%CI:-10.27 to-3.57,P<0.0001)and a lower incidence of reoperation(RR:0.37,95%CI:0.17-0.82,P=0.01).However,there was no discernible variation regarding hospital stay,implant-related complications,and infections.CONCLUSION Compared to DCS,PFN offers shorter operative times,reduces the blood transfusions requirements,achieves higher closed reduction success,enables faster fracture healing,and lowers reoperation incidence.
文摘A dynamic free energy hysteresis model in magnetostrictive actuators is presented. It is the free energy hysteresis model coupled to an ordinary different equation in an unusual way. According to its special structure, numerical implementation method of the dynamic model is provided. The resistor parameter in the dynamic model changes according to different frequency ranges. This makes numerical implementation results reasonable in the discussed operating frequency range. The validity of the dynamic free energy model is illustrated by comparison with experimental data.
基金Supported by National Natural Science Foundation of China(60874044) Research Foundation for Key Disciplines of Beijing Municipal Commission of Education (XK100060422)
基金Project supported by the Natural Science Funds of Ningxia,China (Grant No.ZR1221)the National Natural Science Foundation of China (Grant No.11964027)。
文摘Flexoelectric effect, referring to the strain gradient induced polarization, widely exists in dielectric materials, but its molecular dynamics has not been studied so much so far. In this work, the radial distribution function of BaTiO_(3) and the phase transition temperatures have been investigated, and the results show that the core-shell potential model is effective and the structure of BaTiO_(3) is stable in a temperature range of 10 K–150 K. Molecular dynamics simulated hysteresis loops of BaTiO_(3) show that anisotropy can play an important role in the coercive field. Based on the rational simulation process,the effects of cantilever beam bent angle and fixed length on the polarization are analyzed. It is found that the small bent angle of the curved cantilever beam can give a proportional relationship with a fixed end length and a non-linear relationship is presented when the bent angle is much larger. The prediction of flexoelectric coefficient in BaTiO_(3) is 18.5 nC/m. This work provides a computational framework for the study of flexoelectric effect by using molecular dynamics.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)(No.2017R1A5A1014883).
文摘This paper presents dynamic-behavior comparisons and related forensic analyses of a submerged floating tunnel(SFT)between numerical simulation and physical experiment under regular and irregular waves.The experiments are conducted in the 3Dwave tank with 1:33.3 scale,and the corresponding coupled time-domain simulation tool is devised for comparison.The entire SFT systemconsists of a long concrete tunnel and 12 tubular aluminummooring lines.Two numerical simulation models,the Cummins equation with 3D potential theory including second-order wave-body interaction effects and the much simpler Morison-equation-based formula with the lumped-massbased line model,are designed and compared.Forensic analyses for mooring-line adjustments in the simulation are carried out in view of the best representation of the physical system.After that,the measured pre-tension distribution and systemstiffness of twelvemooring lines arewell reproduced in the numericalmodel.Subsequently,the dynamic responses and mooring tensions of the SFT are compared under regular and irregular waves.The measured and simulated results coincide reasonably well for both regular-and irregular-wave conditions.
文摘电源管理芯片在超过可承受温度范围工作时会对自身造成不同程度的损坏,过温保护电路对提高该类芯片的可靠性和鲁棒性具有重要作用。文中设计了一种具有温度过高关断和温度过低提醒等双重功能的高精度过温保护电路。利用正、负温度系数电压对芯片温度进行实时检测,并与带隙基准电路输出端的不同基准电压分别进行比较得到4个逻辑翻转点,进而通过高精度比较器电路和迟滞逻辑电路处理后,输出迟滞逻辑信号来控制芯片的工作状态或进行温度过低提醒。基于0.18μm BCD(Bipolar-Complementary Metal Oxied Semiconductor-Double diffused Metal Oxide Semiconductor)工艺设计并完成了相关仿真验证,仿真结果表明,在电源电压范围为3.0~5.5 V时,该电路输出端的迟滞逻辑翻转信号对应的温度阈值最大偏移量在0.3℃以内,具备较高的精度,可广泛集成于各种需要过温保护功能的电源管理芯片。
基金the National Natural Science Foundation of China(NSFC)under Grant Nos.12172249,12192212,and 12021002.
文摘Adhesion plays an important role in miniaturized devices and technologies,which depends not only on indentation depth but also on the history of contact making and breaking,giving rise to adhesion hysteresis.In the present work,adhesion hysteresis has been investigated via molecular dynamics simulations on approaching and retracting a rigid tip to and from a substrate.The results show that hysteresis in the force-displacement curve that depends on approaching and retraction velocities arises under both elastic and plastic deformation.The underlying mechanisms have been analyzed.The implications of the results in friction have been discussed briefly.